Appendix 6-1. Additional Airfield Boreholes GI Report

Ground Investigations Ireland Ltd., Catherinestown House, Hazelhatch Road, Newcastle, Co Dublin. Tel: 01 601 5175 / 5176 | Fax: 01 601 5173 Email: info@gii.ie | Web: gii.ie

Ground Investigations Ireland

Additional Airfield Boreholes

Ground Investigation Report

DOCUMENT CONTROL SHEET

Project Title	Additional Airfield Boreholes
Engineer	Balfour Beatty
Client	DAA
Project No	7687-04-18
Document Title	Ground Investigation Report

Rev.	Status	Author(s)	Reviewed By	Approved By	Office of Origin	Issue Date
А	Final	S Kealy	C Finnerty	F McNamara	Dublin	17 July 2018

Ground Investigations Ireland Ltd., Catherinestown House, Hazelhatch Road, Newcastle, Co Dublin. Tel: 01 601 5175 / 5176 | Fax: 01 601 5173 Email: info@gii.ie | Web: gii.ie

CONTENTS

1.0	Preamble	3
2.0	Overview	3
2.1.	Background	3
2.2.	Purpose and Scope	3
3.0	Subsurface Exploration	3
3.1.	General	3
3.2.	Cable Percussion Boreholes	3
3.3.	Rotary Boreholes	4
3.4.	Laboratory Testing	5
4.0	Ground Conditions	5
4.1.	General	5
4.2.	Groundwater	6

APPENDICES

Appendix 1	Site Location Plan
Appendix 2	Borehole Records
Appendix 3	Laboratory Testing

1.0 Preamble

On the instructions of Balfour Beatty Infrastructure Group, a site investigation was carried out by Ground Investigations Ireland Ltd., between May and June 2018 at a number of locations on the Airside Section of Dublin Airport.

2.0 Overview

2.1. Background

The Ground Investigation was carried out to assist in the design of future works being carried out on this section of the airport.

2.2. Purpose and Scope

The purpose of the site investigation was to investigate subsurface conditions utilising a variety of investigative methods in accordance with the project specification. The scope of the work undertaken for this project included the following:

- Visit project site to observe existing conditions
- Carry out 6 No. Cable Percussion boreholes to a maximum depth of 7.0m BGL
- Carry out 6 No. Rotary Core Boreholes to a maximum depth of 38.0m BGL
- Geotechnical & Environmental Laboratory testing
- Factual Report

3.0 Subsurface Exploration

3.1. General

During the ground investigation a programme of intrusive investigation specified by the Consulting Engineer was undertaken to determine the sub surface conditions at the proposed site. Regular sampling and insitu testing was undertaken in the exploratory holes to facilitate the geotechnical descriptions and to enable laboratory testing to be carried out on the soil samples recovered during excavation and drilling. The procedures used in this site investigation are in accordance with Eurocode 7 Part 2: Ground Investigation and testing (ISEN 1997 – 2:2007) and B.S. 5930:2015.

3.2. Cable Percussion Boreholes

The Cable Percussion Boreholes were drilled at the locations shown in Appendix 1. The borehole were drilled using a Dando 2000 drilling rig with regular in-situ testing and sampling undertaken to facilitate the production of geotechnical logs and laboratory testing.

The standard method of boring in soil for site investigation is known as the Cable Percussion method. It consists of using a Shell in non cohesive soils and a clay cutter in cohesive soils, both operated on a wire cable. Very hard soils, boulders and other hard obstructions are broken up by chiselling and the fragments removed with the Shell. Where ground conditions made it necessary, the borehole was lined with 200mm diameter steel casing. While the use of the Cable Percussion method of boring gives the maximum data on soil conditions, some mixing of laminated soil is inevitable. For this reason, thin lenses of granular material may not be noticed. Disturbed samples were taken from the boring tools at suitable depths, so that there is a representative sample at the top of each change in stratum and thereafter at regular intervals down the borehole until the next stratum was encountered. The disturbed samples were then sealed and sent to the laboratory where they were visually examined to confirm the description of the relevant strata.

Standard Penetration Tests were carried out in the boreholes. The results of these tests, together with the depths at which the tests were taken are shown on the accompanying borehole records. The test consists of a thick wall sampler tube, 50mm external diameter, being driven into the soil by a monkey weighing 63.5kg and with a free drop of 760mm. For gravels and glacial till the driving shoe was replaced by a solid 60° cone. The Standard Penetration Test number referred to as the 'N' value is the number of blows required to drive the tube 300mm, after an initial penetration of 150mm. The number gives a guide to the consistency of the soil and can also be used to estimate the relative strength/density at the depth of the test and also to estimate the bearing capacity and compressibility of the soil. The cable percussion borehole logs are provided in Appendix 2 of this Report.

3.3. Rotary Boreholes

The rotary coring was carried out by a track mounted T44 Beretta rig at the locations shown on the location plan in Appendix 1. The rotary boreholes were completed from the ground surface or alternatively, where noted on the individual borehole log, from the base of the cable percussion borehole where a temporary liner was installed to facilitate follow-on rotary coring.

The T44 Beretta is equipped with rubber tracks which allow for short travel on pavement surfaces avoiding any damage to the surface. The T44 Beretta utilises a triple tube core barrel system operated using a wireline drilling process. The outer barrel is rotated by the drill rods and at its lower end, carries the coring bit. The inner barrel is mounted on a swivel so that it does not rotate during the process. The third barrel or liner is placed within the second one to retain the core intact and to preserve as much as possible the fabric of the drilling stratum. The core is cut by the coring bit and passes to the inner liner. The core is brought up to the surface within the inner barrel on a small diameter wire rope or line attached to the "overshoot" recovery tool which is then placed into a core box in order of recovery. A drilling fluid, typically air mist or water flush is passed from the surface through hollow drill rods to the drill bit, and is used to cool the drill bit. Temporary casing is used in some situations to support unstable ground or to seal off fissures or voids. It should be noted that the rotary coring can only achieve limited recovery in overburden, particularly granular or weakly cemented strata due to the flushing medium washing away the cohesive fraction during coring. The recovery achieved, where required is noted on the borehole logs and core photographs are

provided to allow assessment of the core recovered. The rotary borehole logs are provided in Appendix 2 of this Report.

3.4. Laboratory Testing

Samples were selected from the exploratory holes for a range of geotechnical and environmental testing to assist in the classification of soils and to provide information for the proposed design.

Environmental testing, including Waste Acceptance Criteria (WAC) testing was carried out by Jones Environmental Laboratory in the UK.

Geotechnical testing consisting of moisture content, Atterberg limits, Particle Size Distribution (PSD), hydrometer, California Bearing Ratio (CBR), Moisture Condition Value (MCV) and pH and sulphate tests were carried out in GSTL's Geotechnical Laboratory in Wales. Specialist shear strength testing consisting of quick undrained triaxial testing was also carried out in GSTL's Geotechnical Laboratory in Wales.

Rock testing consisting of point load and uniaxial compression tests were carried out in the Geotechnical Laboratory of Trinity College, Dublin.

The results of the laboratory testing are included in Appendix 3 of this Report.

4.0 Ground Conditions

4.1. General

The ground conditions encountered during the investigation are summarised below with reference to insitu and laboratory test results. The full details of the strata encountered during the ground investigation are provided in the exploratory hole logs included in the appendices of this report.

The sequence of strata encountered were consistent across the site and are generally comprised;

- Made Ground
- Cohesive Deposits
- Granular Deposits
- Residual Report
- Weathered Rock
- Bedrock

MADE GROUND: Made Ground deposits were encountered in BH04 and was present to a maximum depth of 2.0m BGL across the site. These deposits were described generally as *brown sandy slightly gravelly CLAY with frequent cobbles and boulders.*

COHESIVE DEPOSITS: Cohesive deposits were encountered beneath the Made Ground to a maximum depth of 28.70m BGL and were described typically as *brown sandy gravelly CLAY with occasional cobbles and boulders* overlying a *stiff dark brown/grey sandy gravelly CLAY with occasional cobbles and boulders*. The secondary sand and gravel constituents varied across the site and with depth, with granular lenses

occasionally present in the glacial till matrix. These deposits had some, occasional or frequent cobble and boulder content where noted on the exploratory hole logs.

GRANULAR DEPOSITS: Two Types of granular deposits were encountered in a number of the boreholes. In BH02A a *brown fine SAND* was found interlaminated with the *stiff thinly laminated CLAY* between 22.10 to 22.70m BGL and again between 26.70m and 27.20m BGL. In BH03 a *brown fine SAND* was found *interlaminated with the stiff thinly laminated CLAY* between 8.60m and 13.90m BGL. In BH05 a *very dense brown sandy clayey sub-angular to sub-rounded fine to coarse GRAVEL with occasional sub-rounded cobbles* was encountered between 15.0m to 17.30m BGL

RESIDUAL ROCK: Residual rock was recovered in BH06 to a maximum depth of 27.50m BGL and was typically described as a *very stiff brown with orange and black mottling slightly sandy CLAY with relic bedding and occasional angular cobbles* or as *angular cobbles and boulders in a brown sandy CLAY matrix.* The secondary sand and gravel constituents varied across the site and with depth, with lenses of Sand occurring throughout the sequence

WEATHERED ROCK: Weathered rock was recovered in BH06 between 21.20m to 24.50m BGL where it was found interbedded with the residual rock sequence. The weathered rock was typically described as a *weak to medium strong laminated grey fine grained LIMESTONE distinctly weathered*.

BEDROCK: Bedrock was encountered in all the boreholes to a maximum depth of 38.0m BGL. The bedrock was typically encountered beneath the cohesive deposits with the exception of BH06 where it was encountered beneath the residual rock sequence. The bedrock was typically described as a *Medium strong* to strong laminated grey fine grained LIMESTONE partially to distinctly weathered.

4.2. Groundwater

No groundwater was noted during the investigation however we would point out that these exploratory holes did not remain open for sufficiently long periods of time to establish the hydrogeological regime and groundwater levels would be expected to vary with the time of year, rainfall, nearby construction and other factors.

APPENDIX 1 - Site Location Plan

APPENDIX 2 - Borehole Records

Flush : Po	eretta T44 olymer	&	Casing 20 10	Diamete Omm cas	ww.gii.ie er sed to 3.50m sed to 32.70m		Level (mOD) 64.02	Additional Airfield Boreholes Client DAA	Job Number 7687-04-1	
Core Dia: 10 Method : Ca G		ssion &	Locatio		242860.5 N	Dates 21	/05/2018	Engineer Balfour Beatty	Sheet 1/4	
Depth (m)	TCR	SCR	RQD	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	
							(1.20)	Open Hole - Air Excavation		
1.20-1.65 1.20-1.20					1,1/1,2,2,2 SPT(C) N=7 B	62.82	(0.60)	Stiff brown slightly sandy gravelly CLAY with occasional sub-rounded cobbles. Gravel is fine to coarse sub-angular to sub-rounded	0 <u>.0.0</u> <u>0.0.0</u> <u>0.0.0</u> <u>0.0.0</u>	
2.00-2.45 2.00-2.00					3,6/7,7,7,8 SPT(C) N=29 B	62.22	1.80 1.20)	Stiff brown slightly sandy gravelly CLAY with occasional sub-rounded cobbles. Gravel is fine to coarse sub-angular to sub-rounded	0 - 7 - 4 - 0 - 7 - 7 - 0	
3.00-3.30 3.00-3.00					1,8/13,11,26 SPT(C) 50/150 B	61.02	(0.50)	Very stiff black slightly sandy gravelly CLAY with occasional sub-rounded cobbles. Gravel is fine to coarse sub-angular to sub-rounded	0.0.0	
3.50	100					00.52		Very stiff dark grey/brown slightly sandy gravelly CLAY with frequent sub-rounded cobbles and occasional boulders. Gravel is fine to coarse sub-angular to sub-rounded	8.00.00 .0.000 .0.000 .0.000 .0.0000 .0.000 .0.000 .0.0000 .0.0000 .0.000 .0.000 .0.000 .0.0000	
4.30 4.30-4.45	100				16,17/50 SPT(C) 50/0					
5.80 5.80-5.95	100				19,25/50 SPT(C) 50/0		(5.90)			
7.30 7.30-7.45	100		-		20,25/50 SPT(C) 50/0				2010 1000 1000 1000 1000 1000 1000 1000	
8.80 8.80-85.00	100		-		27,25/50 SPT(C) 50/0	54.62		Very stiff brown slightly sandy gravelly CLAY with frequent sub-rounded cobbles and occasional boulders. Gravel is fine to coarse sub-angular to sub-rounded	0 0 0 0 0 0 0 0 0 0 0 0 0 0	
Remarks Cable Percus	ssion borel	hole termi	nated due	e to Obst	rction - Presumed Bo 2.70m BGL	oulder	<u> </u>	Scale (approx	Logged	
Borehole bac Chiselling fro	ckfilled upo	n comple	tion with b	bentonite	grout			1:50 Figure	S Kealy No. 04-18.BH01	

	(Grou	nd In	vest w	igations Ire ww.gii.ie	land	Ltd	Site Additional Airfield Boreholes	Bore Num BH	
Machine : Da Be Flush : Po Core Dia: 10	eretta T44 olymer	&	20	Diamete Omm cas 2mm cas	er sed to 3.50m sed to 32.70m		Level (mOD) 64.02	Client DAA	Job Num 7687-	
Method : Ca		ssion &	Locatio 31		242860.5 N	Dates 2	/05/2018	Engineer Balfour Beatty	Shee 2	et /4
Depth (m)	TCR	SCR	RQD	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Leger	Vater Vater
10.30 10.30-10.45	93		-		19,25/50 SPT(C) 50/0					<u> </u>
11.80 11.80-11.95	100		-		22,25/50 SPT(C) 50/0					والمالك المرابع المرابع المرابع
13.30 13.30-13.45	100		-		25,25/50 SPT(C) 50/0					`२['ॐ!,`२['ॐ!)`२['ॐ!)`२ <u>[</u>
14.80 14.80-14.95	100		_		27,25/50 SPT(C) 50/0	48.52	E_			المعالمة الموالية ال موالية الموالية الموال
16.30 16.30-16.45	100		-		24,25/50 SPT(C) 50/0			Very stiff dark grey/brown slightly sandy gravelly CLAY v frequent sub-rounded cobbles and boulders. Gravel is fi to coarse sub-angular to sub-rounded		<u>؋ۥؖ</u> ٵؖۄٳۨ؋ۥٳٵۄٳۜ؋ۥٳ٦ۄٳڣٳ٦٥
17.80 17.80-17.95	100		_		25,25/50 SPT(C) 50/0		(5.30)	Lense of brown sandy clayey fine to coarse sub-angular to sub-rounded GRAVEL occurs between 17.85m to 18.35m BGL		<u>ۣۧٵؚڡٳٚۻ۬ٳٶٳۻ۬ٳٶٳۻٳۄؚ</u>
19.30 19.30-19.45	100		-		25,25/50 SPT(C) 50/0					<u>ڮٳ؇ڹ؆ٳ؇ڹ؆ٳ؇ڹ؆ٳ؇ڹ؆ٳ؇ڹ</u>
Remarks			1		1	<u> </u>	<u> </u>	Sc. (app	ile Logg ox) By	프 ged
								1:£		ealy

GROUND INVESTIGATIONS IRELAND	(Grou	nd In		igations Ire ww.gii.ie	land	Ltd	Site Additional Airfield Boreholes	Boreh Numb BH(ber
Flush : Po	eretta T44 olymer	&	20	Diamete Omm cas 2mm cas	er sed to 3.50m sed to 32.70m		Level (mOD) 64.02	Client DAA	Job Numb 7687-04	
Core Dia: 10 Method : Ca Ge		ssion &	Locatio 31		242860.5 N	Dates 21	/05/2018	Engineer Balfour Beatty	Sheet 3/4	
Depth (m)	TCR	SCR	RQD	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water
20.80	100				25,25/50	43.22		Very stiff dark grey/black slightly sandy grayelly CLAY with	0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-	
20.80-20.95	100				SPT(C) 50/0			Very stiff dark grey/black slightly sandy gravelly CLAY with frequent sub-rounded cobbles and occasional boulders. Gravel is fine to coarse sub-angular to sub-rounded		
22.30 22.30-22.45	100		_		25,25/50 SPT(C) 50/0					
23.80 23.80-23.95	100		-		25,25/50 SPT(C) 50/0					
25.30 25.30-25.45	100		-		25,25/50 SPT(C) 50/0					
26.80 26.80-26.95			-		25,25/50 SPT(C) 50/0		28.30			
28.30	100					35.72	28.30			
28.30	100	87	18			30.72		Medium strong thinly bedded grey fine to medium LIMESTONE partially to distinctly weathered with calcite veins. Interbedded with a weak to medium strong thickly laminated MUDSTONE partially to distinctly weathered		
29.80				16			(3.00)	Sequence contains one set of fratures. F1 are very close to closely spaced, dipping between 10-30 degrees, planar to stepped rough with some surface staining and clay infilling		
Remarks								Scale (approx) Logge By	əd
								1:50 Figure 7687-	S Kea No. 04-18.BH0	-

	(Grou	nd In	vesti wv	igations Ire vw.gii.ie	land	Ltd	Site Additional Airfield Boreholes		Boreho Number BH01	
Flush : Po	eretta T44 olymer	&	20	Diamete 0mm cas 2mm cas	r ed to 3.50m ed to 32.70m		Level (mOD) 64.02	Client DAA		Job Numbe 7687-04-	
Core Dia: 10 Method : C G		ssion &	Locatio		242860.5 N	Dates 21	/05/2018	Engineer Balfour Beatty		Sheet 4/4	
Depth (m)	TCR	SCR	RQD	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Description		Legend	
1.30	100	88	26			32.72		Madium atoms thinks hadded area fing to madi			
	100	52	7	NI			(1.40)	Medium strong thinly bedded grey fine to mediu LIMESTONE partially to distinctly weathered wi veins. Interbedded with a weak to medium stror laminated MUDSTONE partially to distinctly we Non Intact	th calcite og thickly athered		
32.70						31.32		Complete at 32.70m			
Remarks	<u> </u>		1	1	1		1		Scale (approx)	Logged By	
									1:50 Figure N	S Kealy	
										4- 18.BH01	

Machine : D	ando 2000	Casing	WV Diamete		Ground	Level (mOD)	Site Additional Airfield Boreholes Client DAA	Borehole Number BH02 Job Number
netnod : C	able Percussion	Location		ed to 5.40m	Dates	62.30	Engineer	7687-04-1 Sheet
			6328.6 E	242937.8 N		6/05/2018- /05/2018	Balfour Beatty	
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend
.50-1.95 .50 2.50-2.95 .50	SPT(C) N=5 B SPT(C) N=38 B			1,1/1,1,1,2 3,5/5,9,10,14	61.10 60.40	(0.70)	OPEN HOLE - Air Excavation Soft to firm brown slightly sandy gravelly CLAY with occasional sub-rounded cobbles. Gravel is fine to coarse sub-angular to sub-rounded Very stiff brown slightly sandy gravelly CLAY with ocasional sub-rounded cobbles. Gravel is fine to coarse sub-angular to sub-rounded	
.50-3.88 50 .50-4.65	SPT(C) 50/225 B SPT(C) 50/0			6,7/9,12,21,8	58.80	3.50 (1.50)	Very stiff brown slightly sandy gravelly CLAY with ocasional sub-rounded cobbles. Gravel is fine to coarse sub-angular to sub-rounded	
.50 .40-5.85 .40	B SPT(C) N=50 B			25,25/50	57.30	(2.00)	Very stiff black slightly sandy gravelly CLAY with ocasional sub-rounded cobbles. Gravel is fine to coarse sub-angular to sub-rounded Complete at 7.00m	
Remarks	ons carried out to 1.2 minated due to Obst	20m BGL	esumed	Boulder			Scale (approx)	Logged By
hiselling fro	om 5.20m to 5.40m f	or 1 hour.					1:50	S Kealy
							Figure 7687-0	No.)4-18.BH0:

DP(R)h TCR SCR RQD FI Field Records (MSD) Degrad (The Kersol) Description Lu 1.00 40 - - - 1.00 - - - - 0 - - - 0 - - - 0 - - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - - 0 - - 0 - - 0 - - 0 - - - 0 - - 0 - - - 0 - - - 0 - - - 0 - - - 0 - - - 0 - - - - - - - - - - - - - - -<	Machine : Be Flush : Po Core Dia : 10 Method : Ro	olymer)2&64 mm	t	Casing 10 64 Locatio	Diamete 2mm case mm case	ww.gii.ie sed to 28.70m ed to 33.50m	Dates	Level (mOD) 62.27 /05/2018-	Client DAA Engineer	Job Numbe 7687-04- Sheet
1.00 40 61.27 1.00 61.27 1.00 61.27 0.00 Film brown slightly sandy gravitly CLAY with occasional for bulk-course sub-angular to sub-rounded cobbles. Gravel is fine to coarse sub-a		-		31	6329 E 2	242933.5 N			Balfour Beatty	1/4
1.00 40 61.27 1.00 First brown slightly sandy gravely CLAY with occasional sub-oranded cobbins. Gravel is first to carse sub-angular to sub-rounded for the sub-oranded cobbins. Gravel is first to carse sub-angular to sub-oranded cobbins. Gravel is first to carse sub-angular to sub-oranded for sub-oranded cobbins. Gravel is first to carse sub-angular to sub-oranded co	(m)	TCR	SCR	RQD	FI	Field Records	(mOD)	(m) (Thickness)	Description	Legend
40 10<				_			61.27			.DO
70 93 93 93 100	.00	40							sub-rounded cobbles. Gravel is fine to coarse sub-angular to sub-rounded	6-0-0-0
100 10,25/50 SPT(C) 50/0 57.57 SPT(C) 50/0 4.70 100 57.57 SPT(C) 50/0 4.70 100 57.57 SPT(C) 50/0 4.70 100 25,25/50 SPT(C) 50/0 57.57 SPT(C) 50/0	.70	93						(1.50)	to sub-rounded Lense of brown sandy clayey fine to coarse sub-angular to sub-rounded GRAVEL occurs between	200 200 200 200 200 200 200 200
70 Very sindy galety	.20 .20-3.35	100				19,25/50 SPT(C) 50/0	59.07		Very stiff dark brown slightly sandy gravelly CLAY with occasional sub-rounded cobbles. Gravel is fine to coarse sub-angular to sub-rounded	
100 100 100 25,25/50 SPT(C) 50/0 (6.00) (6.00) (5.00) (6.00) (5.00) (6.00)		86				25,25/50 SPT(C) 50/0	57.57		Very stiff brown slightly sandy gravelly CLAY with occasional sub-rounded cobbles. Gravel is fine to coarse sub-angular to sub-rounded	2010 1000 1000
70 70 25,25/50 100 100 100 100 100 20 25,25/50 100 20-9.35 25,25/50 100		100								
.20-9.35		100								
	.20 .20-9.35	100				25,25/50 SPT(C) 50/0				0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0
Remarks Borehole carried out from ground level hir excavtion carried out to 1.0m BGL to avoid serivces	Remarks	ried out fro	m groun	d level	unid sort	(005			Scale (approx	Logged By

		rou		W١	igations Ire ww.gii.ie			Additional Airfield Boreholes	Num BHC	
Machine : Be Flush : Po Core Dia: 10	olymer		10		er sed to 28.70m ed to 33.50m		Level (mOD) 62.27	Client DAA	Job Num 7687-0	
Method : Ro		ł	Locatio 31		242933.5 N		5/05/2018- 0/05/2018	Engineer Balfour Beatty	Shee 2/	et /4
Depth (m)	TCR	SCR	RQD	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legen	nd
10.70 10.70-10.85	100		_		25,25/50 SPT(C) 50/0	51.57		Very stiff brown slightly sandy gravelly CLAY with occasional sub-rounded cobbles. Gravel is fine to coarse sub-angular to sub-rounded		<u>ଌୄୗଡ଼୳ୖ୵ୡୄୗଡ଼୳ୖ୵ୡୄୗ୲୰୳ୖ୵ୡୄୗ୲୰୳ୖ୵ୡ</u>
2.20 2.20-12.35	70				25,25/50 SPT(C) 50/0		(3.00)	Brown slightly clayey sandy fine to coarse GRAVEL between 12.95m - 13.25m BGL		فبأتقل فباتقل فباتقل فبات
3.70 3.70-13.85	96		_		25,25/50 SPT(C) 50/0	48.57	13.70	Very stiff brown slightly sandy gravelly CLAY with occasional sub-rounded cobbles and boulders. Gravel is fine to coarse sub-angular to sub-rounded		<u>िंक २२ िंक २२ िंक २४ २१ २९ १</u>
15.20 5.20-15.35	100		_		25,25/50 SPT(C) 50/0	47.09	<u> </u>	Very stiff dark brown/grey sandy gravelly CLAY with occasional sub-rounded cobbles. Gravel is fine to coarse sub-angular to sub-rounded		الأخبا تكالأخبا تكالأخبا تكابا تكا
16.70 16.70-16.85	100		_		25,25/50 SPT(C) 50/0					<u> </u>
8.00 8.20-18.35	100		-		25,25/50 SPT(C) 50/0					<u>రు 7 దిరు 7 దిరు 7 దిరు 7 ది</u>
19.70 19.70-19.85					25,25/50 SPT(C) 50/0				0 <u>0</u> 0	<u>] 0 : - 0]</u>
Remarks								Scale (approx	() Logo By	jed
								1:50 Figure	S Ke No. 04-18.BH	

GROUND INTERCATIONS IRELAND A Machine : B		Grou		WV	gations Ire vw.gii.ie			Site Additional Airfield Boreholes	Borehol Number BH02/
Flush : P Core Dia: 10	olymer		10	Diamete 2mm cas mm case	r ed to 28.70m d to 33.50m		Level (mOD) 62.27	DAA	Job Number 7687-04-1
Method : R		ł	Locatio 31		42933.5 N		/05/2018- /05/2018	Engineer Balfour Beatty	Sheet 3/4
Depth (m)	TCR	SCR	RQD	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend
	95								
21.20	95		-			40.17	22.10	Very stiff thinly laminated dark brown slightly gravelly CLAY interlaiminated with a brown fine SAND	
22.70	100		-					Very stiff dark brown/grey sandy gravelly CLAY with occasional sub-rounded cobbles. Gravel is fine to coarse sub-angular to sub-rounded	
4.20	100								
5.70	100		_			35.57	26.70	Very stiff dark brown/grey sandy gravelly CLAY. Gravel is fine to coarse sub-angular to sub-rounded	
27.20	96		-			35.07	(1.50)	Very stiff dark brown/grey sandy gravelly CLAY with occasional sub-rounded cobbles. Gravel is fine to coarse sub-angular to sub-rounded	
8.70	100	66	50				28.70	Medium strong to strong thinly bedded grey fine to medium grained LIMESTONE partially weathered. Interbedded with a black thickly laminated fine grained MUDSTONE	
30.00 Remarks	<u> </u>						<u> </u>		
nemarks								Scale (approx	
								1:50 Figure	S Kealy
									04-18.BH02/

		Grou	nd In		gations Ire /w.gii.ie	land l	_td	Site Additional Airfield Boreholes		Borehole Number BH02A
	olymer		10	Diamete 2mm cas			Level (mOD) 62.27	Client DAA		Job Number 7687-04-18
Core Dia: 1 Method : R			Locatio 31		42933.5 N		/05/2018- /05/2018	Engineer Balfour Beatty		Sheet 4/4
Depth (m)	TCR	SCR	RQD	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Description		Kater Kater
	93	68	36	7			(2.80)	Sequence contains two sets of fractures. F1 are very close to closely spaced dipping between 10-20 degrees, undulating to planar smooth with some clay infilling. F2 are close to medium spaced, dipping between 60-70 degrees, undulating to stepped rough with some clay smearing. Non Intact Zone between 29.45m - 29.70m BGL	/	
31.50						30.77	31.50	Medium strong to strong thinly bedded grey fine to med	dium	
31.70	97	71	52	7			(2.00)	grained LIMESTONE partially weathered. Interbedded a black thickly laminated fine grained MUDSTONE Sequence contains two sets of fractures. F1 are very close to mediumspaced dipping between 10-20 degrees, undulating to planar smooth with some clay infilling. F2 are widely spaced, dipping between 60-7 degrees, undulating to stepped rough with some clay smearing.	/ /	
								Non Intact Zone between 31.70m to 31.80m BGL	-	
33.50								Complete at 33.50m		
Remarks	1		1			<u> </u>		S (ap	icale prox)	Logged By
									1:50	S Kealy
									igure N 687-04-	o. 18.BH02A

Machine : D	ando 2000 eretta T44		Casing	WV Diamete			Ltd Level (mOD)	Site Additional Airfield Boreholes Client DAA	Borehol Number BH03 Job Number
Flush : Po Core Dia: 10	olymer 02 mm		102	2mm cas 2mm cas	sed to 3.10m sed to 22.50m				7687-04-
/lethod : C G	able Percu eobore S	ssion &	Locatio 31		243177.1 N	Dates 15 19	5/05/2018- 9/06/2018	Engineer Balfour Beatty	Sheet 1/3
Depth (m)	TCR	SCR	RQD	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend
1.20					B 4,4/3,3,3,3 SPT(C) N=12			OPEN HOLE - Air Excavation Firm brown slightly sandy gravelly CLAY with occasional sub-rounded cobbles. Gravel is fine to coarse sub-angular to sub-rounded	.0 <u>-0-</u> 0 6 - 0 0 0 - 0 0
.50-1.95 .50 .50-2.80 .50	100				7,8/11,12,27 SPT(C) 50/150 B			Very stiff dark brown/grey slightly sandy gravelly CLAY with ocasional sub-rounded cobbles. Gravel is fine to coarse sub-angular to sub-rounded	
1.50 1.50-4.80	100				5,7/12,14,24 SPT(C) 50/150			Very stiff dark brown slightly sandy gravelly CLAY with ocasional sub-rounded cobbles. Gravel is fine to coarse sub-angular to sub-rounded	
3.00 3.20-6.35	100		_		21,25/50 SPT(C) 50/0				
7.50 7.50-7.65	88		-		25,25/50 SPT(C) 50/0			Very dense brown slightly silty fine to coare SAND	2000 200 2000 2
9.00 9.00-9.45	97		-		5,6/7,6,7,8 SPT(C) N=28				
Remarks	ons carried	out to 1.2	20m BGL		1			Scale (approx	Logged
Cable percs Borehlole ba	uuion borel ckfilled wit	hole termi h bentoni	inated due te upon co	to Obst	rction - Presumed Bo า	ulder			
chiselling fro	3.00m t	0 3. IUM T	or i nour.					1:50 Figure	S Kealy
									NO. 04-18.BH0

Machine : Da	ando 2000		Casing	W	igations Ire ww.gii.ie m		Level (mOD)	Additional Airfield Boreholes Client	Number BH03 Job
	eretta T44 olymer		200) mm ca	sed to 3.10m sed to 22.50m		/	DAA	Number 7687-04-1
Core Dia: 10)2 mm		Locatio		seu to 22.3011	Dates		Engineer	Sheet
Method : Ca Ge	able Percus eobore S	ssion &			E 243177.1 N	15	5/05/2018- 9/06/2018	Balfour Beatty	2/3
Depth (m)	TCR	SCR	RQD	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend
0.50 0.50-10.88			_		8,11/11,12,14,13 SPT(C) 50/225		(0.65)	Very stiff brown sandy gravelly CLAY. Gravel is fine to coarse sub-angular to sub-rounded	
	94						10.90 (0.70) 11.60 (0.55)	Very stiff brown laminated CLAY with lenses of brown fine to medium SAND	
2.00 2.00-12.38			_		10,11/12,14,14,10 SPT(C) 50/225		12.15	Very dense brown slightly silty fine to coarse SAND Very stiff dark brown gravelly CLAY with occasional sub-rounded cobbles. Gravel is fine to coarse sub-angular	
	93						(0.35) 12.50	sub-rounded cobbles. Gravel is fine to coarse sub-angular to sub-rounded Very stiff dark brown slightly gravelly CLAY with lenses of brown fine SAND	
3.50 3.50-13.65			_		14,21/50 SPT(C) 50/0		13.40 13.50 (0.30)	Very dense brown fine to caorse SAND	
3.50-13.65					SPT(C) 50/0		13.80 13.90	Very stiff brown slightly sandy gravelly CLAY. Gravel is fine to coarse sub-angular to sub-rounded Very dense brown fine to medium SAND	
	85		_				(1.10)	Very stiff brown very sandy slightly gravelly CLAY. Gravel is fine to coarse sub-angular to sub-rounded	2000 2000 2000 2000 2000 2000 2000 200
5.00 5.00-15.15	100				24,25/50 SPT(C) 50/0			Very stiff brown sandy gravelly CLAY. Gravel is fine to coarse sub-angular to sub-rounded	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6.50 6.50-16.65					21,25/50 SPT(C) 50/0				
7.35	100	30	17		-		(2.35)	Medium strong thinly bedded grey/dark grey fine grained LIMESTONE partially to distinctly weathered	
8.00	97	66	38					Sequnce contains two sets of fractures. F1 are close to medium spaced, dipping between 10-30 degrees, undulating to planar rough with some surface staining and clay infilling. F2 are widely spaced, dipping between 50-70 degress, planar smooth with some surface staining and Clay infilling	
9.50				5					
Remarks	I							Scale (approx)	Logged By
								1:50	S Kealy
									No.

	(Grou	nd In	vesti wv	gations Ire vw.gii.ie	land	Ltd	Site Additional Airfield Boreholes		Borehol Number BH03
Machine : Da Be Flush : Po Core Dia: 10	eretta T44 olymer	&		Diamete 0mm cas 2mm cas	r ed to 3.10m ed to 22.50m	Ground	Level (mOD)	Client DAA		Job Number 7687-04-1
Method : Ca		ssion &	Location 31		243177.1 N	Dates 15 19	/05/2018- /06/2018	Engineer Balfour Beatty		Sheet 3/3
Depth (m)	TCR	SCR	RQD	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Description		Legend
	98	92	6				(5.15)			
1.00	100	81	63							
22.50								Complete at 22.50m		
Remarks							-		Scale (approx)	Logged By
									1:50	S Kealy
									Figure N	lo. 4-18.BH03

Instruct : Cable Precusation A Genome 34 (1995) 316249 E 243100.1 N 26052015 - Baffour Bestry Instruct E All (1995) Description Logs 98/h TOR SCR ROD PI Field Records (1905) Baffour Bestry Logs	E	Dando 2000 Beretta T44 Polymer	&	10	Diamete Omm cas 2mm cas	ww.gii.ie sed to 7.00m sed to 20.00m ed to 32.70m		Level (mOD) 62.73	Client DAA	Job Numbe 7687-04-
30.1.75 11/1.2.1.2 B ¹ T(0, N=0 61.53 E ¹ (1.20) OPEN HOLE - Ar Excavation 30.1.75 1.1/1.2.1.2 B ¹ T(0, N=0 61.53 E ¹ (1.20) MADE GROUND consisting of brown slightly sandy gravely CLAY with occasional sub-rounded cobbles. Gravel is fine to consisting of brown gravely CLAY with occasional sub-rounded cobbles. Gravel is fine to coarse au-arguiner to sub-rounded 7 50.2.95 1.3/4.6.6.11 SPT(0, N=27 B ¹ T(0, N=01 B	Alethod : C	Cable Percs				243108.1 N	16		-	Sheet 1/4
30.1.75 1.11/1.2.12 SPTICI Neg 61.53 End SPTICI Neg 1.01/2.12 SPTICI Neg 0.1.05 End SPTICI Neg 1.01/2.12 SPTICI Neg 0.0.00 SPTICI Neg 0.0.00 SPTICI Neg NADE GROUND consisting of hrow alightly sandy gravely CLAV with coarse sub-angular to sub-rounded 1.21/2.21/2 SPTICI Neg 1.21/2.21/2/2.21/2/2.21/2.21/2.21/2.21/	Depth (m)	TCR	SCR	RQD	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend
30.1.75 SPT(C) N=6 SPT(C) SPT								(1.20)	OPEN HOLE - Air Excavation	
So 2.95 So 2.95 <t< td=""><td>.30-1.75 .30</td><td></td><td></td><td></td><td></td><td>SPT(C) N=6</td><td>61.53</td><td></td><td>CLAY with occasional sub-rounded cobbles. Gravel is fine</td><td></td></t<>	.30-1.75 .30					SPT(C) N=6	61.53		CLAY with occasional sub-rounded cobbles. Gravel is fine	
50-3.55 50 SPT(C) N=51 0.52.5 0.50 Very stiff and to soub-rounded cobbles. Gravelly CLAY with occasional sub-ounded cobbles. Gravel s fine to coarse sub-angular to	2.50-2.95 2.50					SPT(C) N=27	60.73		occasional sub-rounded cobbles. Gravel is fine to coarse	
50-4.80 SPT(C) 50/150 S0-2.5 4.30 Very stiff black slightly sandy gravelly CLAY with occassional to sub-rounded 25 50-5.60 SPT(C) SPT(C) (2.50) (2.50) (2.50) 50-6.65 SPT(C) SPT(C) (2.50) (2.50) 50-6.65 SPT(C) SPT(C) (2.50) 100 SPT(C) (2.50) (2.50) 100 SPT(C) (2.50) (2.50) 100 SPT(C) <td>9.50-3.95 9.50</td> <td></td> <td></td> <td></td> <td></td> <td>SPT(C) N=51</td> <td>59.23</td> <td></td> <td>occasional sub-rounded cobbles. Gravel is fine to coarse</td> <td>0.000 0.0000 0.0000 0.0000 0.000000</td>	9.50-3.95 9.50					SPT(C) N=51	59.23		occasional sub-rounded cobbles. Gravel is fine to coarse	0.000 0.0000 0.0000 0.0000 0.000000
50-5.60 B (2.50) 50-6.65 SPT(C) 50/0 50 B 100 55.73 100 20.25/50 50-8.65 20.25/50 100 20.25/50 100 20.25/50 100 20.25/50 50-8.65 20.25/50 100 20.25/50 SPT(C) 50/0 E E E 100 E E E E E E E	.50-4.80 .50					SPT(C) 50/150	58.23	4.50	sub-rounded cobbles. Gravel is fine to coarse sub-angular	0-0-0
50-6.65 50 00 100 100 50-8.65 100 20.25/50 SPT(C) 50/0 100 20.25/50 SPT(C) 50/0 100 20.25/50 SPT(C) 50/0 SPT(C) 50/0 SP	.50-5.60 .50					SPT(C)		(2.50)		0.000 0.0000 0.0000 0.000000
100 100 20,25/50 50-8.65 100 20,25/50 SPT(C) 50/0 E E E E E E E E E E E E E	.50					SPT(C) 50/0	55.73	7.00	Very stiff brown/grey slightly sandy gravelly CLAY with	0.00 0.00
50 20,25/50 1,20 50-8.65 SPT(C) 50/0 1,20 100 100 100 0.00 <		100							fine to coarse sub-angular to sub-rounded	
Remarks ir excavations carried out to 1.20m BGL	50-8.65	100								
iii excavations carined out to 1.2011 Bolt (approx) By (approx) By (approx) By	Remarks					1	1		Scale	Logged
maple disturbance from 4.50m to 6.50m BGL due to borehole collapse beobore S techniques carried out from 4.50m BGL to 20.0m BGL and ConventionIa HQ rotary coring carried out from 20.0m BGL to 32.70m BGL 1:50 S Ke	able percu	ussion borel	nole termir m 4 50m t	nated due	3GL due	to horehole collanse			(approx)	By

				W١	igations Ire ww.gii.ie			Site Additional Airfield Boreholes	Borehole Number BH04
Flush : Po	eretta T44 olymer		10	2mm ca	er sed to 7.00m sed to 20.00m ed to 32.70m		Level (mOD) 62.73	Client DAA	Job Number 7687-04-1
Core Dia: 10 Method : Ca G			Locatio 31		243108.1 N		6/05/2018- 1/05/2018	Engineer Balfour Beatty	Sheet 2/4
Depth (m)	TCR	SCR	RQD	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend
10.00-10.15	97				22,25/50 SPT(C) 50/0				
11.50 11.50-11.65	100		_		19,25/50 SPT(C) 50/0			Lense of brown sandy clayey sub-angular to sub-rounded fine to coarse GRAVEL occurs between 11.40m - 11.90m BGL	
13.00 13.00-13.15	97		-		25,25/50 SPT(C) 50/0	49.73		Very stiff brown slightly sandy gravelly CLAY with occasional sub-rounded cobbles and boulders. Gravel is fine to coarse sub-angular to sub-rounded	
14.50 14.50-14.65	96		_		22,25/50 SPT(C) 50/0		(3.85)		2 2 2 2 2 2 2 2 2 2 2 2 2 2
16.00 16.00-16.15	60		-		19,25/50 SPT(C) 50/0	45.88		Poor Recovery - Driller notes gravelly CLAY. Recovery consists grey fine to coarse angular to sub-angular Gravel with Clay washed away	
17.40 17.40-17.55	100		-		22,25/50 SPT(C) 50/0		(1.15)		0 0 0 0 0 0 0 0 0 0 0 0
18.00 18.00-18.15	0		-		25,25/50 SPT(C) 50/0	44.73		Core Loss - Driller notes silty sandy CLAY	0.000 0.0000 0
19.00 19.00-19.23	0		-		11,14/15 SPT(C) 15/75				0 0 0 0 0 0 0 0 0 0 0 0 0 0
20.00 Remarks			1				F	01-	100004
								Scale (approx 1:50 Figure 7687-	S Kealy

Listen is explaned Listen is explaned DAA Toper- listende Data Data Toper- listende Data Data <thdata< th=""> <thdata< th=""></thdata<></thdata<>					W	igations Ire ww.gii.ie			Additional Airfield Boreholes	Numbe BH04
Inclusion Details Details Details Details Sectors	Be Flush : Po	eretta T44 olymer	α	10	2mm cas	sed to 20.00m		. ,		Job Numbe 7687-04-
0.00-20.15 60 1 22.25 20.00 Very stiff dirk brownigery sliphtly sandy gravely CLAY with occasional ad-rounded cables and boulder. Gravel is in the outer sub-output of a sub-rounded cables and boulder. Gravel is in the outer sub-output of a sub-rounded cables and boulder. Gravel is in the outer sub-output of a sub-rounded cables and boulder. Gravel is in the outer sub-output of a sub-rounded cables and boulder. Gravel is in the outer sub-output of a sub-rounded cables and boulder. Gravel is in the outer sub-output of a sub-rounded cables and boulder. Gravel is in the outer sub-output of a sub-rounded cables and boulder. Gravel is in the outer sub-output of a sub-rounded cables and boulder. Gravel is in the outer sub-output of a sub-rounded cables. Gravel is in the output of a sub-rounded cable. Gravel is into cables and output of a sub-rounded cables. Gravel is into cables and output of a sub-rounded cables. Gravel is into cables and output of a sub-rounded cable. Gravel is into cables and output of a sub-rounded cable. Gravel is into cables and output of a sub-rounded cables. Gravel is into cables and output of a sub-rounded cable. Gravel is into cables and output of a sub-rounded cables. Gravel is into cables and output of a sub-rounded cables. Gravel is into cables and output of a sub-rounded cables. Gravel is into cables and output of a sub-rounded cable. Gravel is into cables and output of a sub-rounded cable. Gravel is into cables and output of a sub-rounded cable. Gravel is into cables and output of a sub-rounded cable. Gravel is into cables and output of a sub-rounded cables and output of a sub-rounded cables. Gravel is into cables and represented and output of a sub-rounded cables. Gravel is into cables and represented	/lethod : Ca	able Percs	ussion &			243108.1 N	16			Sheet 3/4
1 20 00 100 <th>Depth (m)</th> <th>TCR</th> <th>SCR</th> <th>RQD</th> <th>FI</th> <th>Field Records</th> <th>Level (mOD)</th> <th>Depth (m) (Thickness)</th> <th>Description</th> <th>Legend</th>	Depth (m)	TCR	SCR	RQD	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend
2.70 60	20.00-20.15	60				22,25/ SPT(C)	42.73		Very stiff dark brown/grey slightly sandy gravelly CLAY with occasional sub-rounded cobbles and boulders. Gravel is fine to coarse sub-angular to sub-rounded	0.0000000 0.0000000
4.20 38.53 24.20 4.20 100 38.53 24.20 5.70 68 (3.35) 4.20 5.70 86 (3.35) 4.20 7.55 100 75 98 (3.35) 8.70 100 75 98 (4.15) 100 91 63 7 (4.15)	1.20	60						(4.20)		
4.20 100 100 100 5.70 86 7.20 7.55 100 75 98 8.70 100 91 63 7 Remarks Remarks Kemark	2.70	80					20.52			<u> </u>
86	:4.20	100		-			38.53		to sub-rounded Lense of brown sandy clayey sub-angular to sub-rounded fine to coarse GRAVEL occurs between	
27.55 100 75 98 35.18 27.55 Medium strong thinly bedded dark grey fine grained LIMESTONE partially to distinctly weathered interbedded with a dark grey black thickly laminated MUDSTONE 28.70 100 91 63 7 (4.15) The sequence contains two sets of fractures. F1 are close to medium spaced, dipping between 45-80 degrees, undulating rough with some clay surface staining. F2 are widely spaced, dipping between 45-80 degrees, undulating rough with some surface staining Scale (approx) bgg Remarks	25.70	86								
100 91 63 The sequence contains two sets of fractures. F1 are close to medium spaced, dipping 5-25 degrees, undulating rough with some clay surface staining. F2 are widely spaced, dipping between 45-80 degrees, undulating rough with some surface staining Remarks (4.15) Scale (approx) bggg	27.20 27.55	100	75	98		-	35.18		LIMESTONE partially to distinctly weathered interbedded	
(approx) By	8.70	100	91	63	7				close to medium spaced, dipping 5-25 degrees, undulating rough with some clay surface staining. F2 are widely spaced, dipping between 45-80 degrees,	
1:50 S Ke	Remarks			1	I	1			Scale (approx)	Logged By
									1:50	S Kealy

				WV	igations Ire vw.gii.ie	and	Ltd	Site Additional Airfield Boreholes		Boreho Numbe BH04
lush : Po	eretta T44 olymer		Casing 20 10 64	Diamete Omm cas 2mm cas mm case	r ed to 7.00m ed to 20.00m ed to 32.70m		Level (mOD) 62.73	Client DAA		Job Numbe 7687-04-
ore Dia: 10 lethod : Ca Ge			Locatio 31		43108.1 N		/05/2018- /05/2018	Engineer Balfour Beatty		Sheet 4/4
Depth (m)	TCR	SCR	RQD	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Description		Legend
0.20	93	86	57	_						
1.70	95	94	32	5		31.03	31.70 (1.00)	Medium strong thinly bedded dark grey fine grain LIMESTONE partially to distinctly weathered inte with a dark grey black thickly laminated MUDSTC The sequence contains one set of fractures. F close to medium spaced, dipping 5-25 degrees undulating rough with some clay surface staining	5,	
								Complete at 32.70m		
Remarks									Scale (approx)	Logged By
									1:50 Figure N 7687-04	S Kealy No. 4-18.BH04

		8	Casing 20	W Diamete Omm ca	sed to 4.70m	Ground	LtO Level (mOD) 65.10	Additional Airfield Boreholes Client DAA	Numbe BH0 Job Numbe
Core Dia: 10	02 mm		102 Locatio		sed to 28.50m	Dates		Engineer	7687-04 Sheet
	able Percu eobore S I ored				E 243983.1 N	17	7/05/2018- 1/06/2018	Balfour Beatty	1/3
Depth (m)	TCR	SCR	RQD	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend
							(1.20)	OPEN HOLE - Air Excavation	
1.20 1.50-1.95					B 4,4/3,3,3,3 SPT(C) N=12	63.90	1.20 (0.90)	Firm brown slightly sandy gravelly CLAY with occasional sub-rounded cobbles. Gravel is fine to coarse sub-angular to sub-rounded	0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0 0.0 0
2.00 2.50-2.80					B 7,8/11,12,27 SPT(C) 50/150	63.00	2.10	Stiff dark brown/grey slightly sandy gravelly CLAY with occasional sub-rounded cobbles. Gravel is fine to coarse sub-angular to sub-rounded	0.0.0 0.0.0 0.0.0 0.0.0 0.0.0
3.00					в	62.10	3.00	Very stiff black slightly sandy gravelly CLAY with occasional sub-rounded cobbles. Gravel is fine to coarse sub-angular to sub-rounded	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4.00					В		(1.70)		00000000000000000000000000000000000000
1.70	100		_			60.40	4.70 4.70 (1.50)	Very stiff dark brown/grey slightly sandy gravelly CLAY with occasional sub-rounded cobbles. Gravel is fine to coarse sub-angular to sub-rounded Lense of brown sandy clayey sub-angular to sub-rounded fine to coarse GRAVEL occurs between 4.70m - 4.90m BGL	
5.20 5.20-6.35	100		_		19,25/50 SPT(C) 50/0	58.90		Very stiff brown slightly sandy gravelly CLAY with occasional sub-rounded cobbles. Gravel is fine to coarse sub-angular to sub-rounded	
7.50 7.50-7.65	96		-		21,25/50 SPT(C) 50/0				
9.00 9.00-9.15	400		_		19,25/50 SPT(C) 50/0	56.10		Very stiff dark brown/grey slightly sandy gravelly CLAY with occasional sub-rounded cobbles. Gravel is fine to coarse sub-angular to sub-rounded	
Remarks	100								0 <u>.05</u> 0 6000
Air excavatio Cable Percu	ssion bore	hole termi	inated at 4	1.20m B rom 4 2	GL due to Obstrction 0m to 28.50m BGL			Scale (approx)	Logge By
Borehole bac Chiselling fro	ckfilled with om 4.10m t	h bentonit to 4.20m f	e upon co or 1 hour.	mpletior	0m to 28.50m BGL ו			1:50 Figure 7687-0	S Kealy No. 04-18.BH0

	ando 2000 eretta T44 olymer	&		Diamete 0mm cas	sed to 4.70m		Level (mOD) 65.10	Client DAA	BH0 Job Numbe 7687-04
			Locatio	n	ed to 28.50m		7/05/2018- /06/2018	Engineer Balfour Beatty	Sheet 2/3
Depth (m)	TCR	SCR	RQD	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend
10.50 10.50-10.65	100		-		22,25/50 SPT(C) 50/0	54.05	(2.05)	Very stiff brown slightly sandy gravelly CLAY with occasional sub-rounded cobbles. Gravel is fine to coarse sub-angular to sub-rounded	ို ရဲ့လုပ် စရှိသည့် ရေးကို စရက် စ ဒီလျန်းလို စရက် စရက် စရက် စ ဒီလျန်းလို ရေးစရာ စရက် စရက် စ စရာ စရိုသို့ စရိုသို့ ရေးစရိုသူ စရို
2.00 2.00-12.15	100		-		22,25/50 SPT(C) 50/0	52.75	(1.30)	Very stiff dark brown/grey slightly sandy gravelly CLAY with frequent sub-rounded cobbles and occasional boulders. Gravel is fine to coarse sub-angular to sub-rounded	(*) (*) (*) (*) (*) (*) (*) (*)
13.50 13.50-13.65	100		-		25,25/50 SPT(C) 50/0	51.60 51.40	= (0.20)	Very stiff brown slightly sandy gravelly CLAY with occasional sub-rounded cobbles. Gravel is fine to coarse sub-angular to sub-rounded Very stiff dark brown/grey slightly sandy gravelly CLAY with frequent sub-rounded cobbles and occasional boulders. Gravel is fine to coarse sub-angular to sub-rounded	
15.00 15.00-15.15			-		22,25/50 SPT(C) 50/0	50.10	15.00	Very dense brown sandy clayey sub-angular to sub-rounded fine to coarse GRAVEL with occasional sub-rounded cobbles	
16.50 16.50-16.65	100		-		25,25/50 SPT(C) 50/0		(2.30)		
8.00 8.00-18.15	100		-		25,25/50 SPT(C) 50/0	47.80		Very stiff black slightly sandy gravelly CLAY with frequent sub-rounded cobbles and occasional boulders. Gravel is fine to coarse sub-angular to sub-rounded	କିତ୍ୟୁକ୍ତି କାର୍ଚ୍ଚ କାର୍ଚ୍ଚ ସାମ୍ପ୍ୟୁକ୍ତି କାର୍ଚ୍ଚ କାର୍ଚ୍ଚ କାର୍ବ୍ୟୁକ୍ତାର୍ବ୍ୟୁକ୍ତି କାର୍ଚ୍ଚ କାର୍ଚ୍ଚ କାର୍ଚ୍ଚ କାର୍ଚ୍ଚ କାର୍ଚ୍ଚ
19.50 19.50-19.65	100		-		25,25/50 SPT(C) 50/0			Lense of brown sandy clayey sub-angular to sub-rounded fine to coarse GRAVEL occurs between 19.50m - 19.90m BGL	60000000000000000000000000000000000000
Remarks								Scale (appro)	() Logge By
								1:50	S Keal

	(Grou	nd In		gations Ire	land	Ltd	Site Additional Airfield Boreholes	Boreho Numbe BH0
Flush : Po	eretta T44 olymer	&	20		r ed to 4.70m ed to 28.50m		Level (mOD) 65.10	Client DAA	Job Numbe 7687-04
			Locatio 31		243983.1 N		7/05/2018- /06/2018	Engineer Balfour Beatty	Sheet 3/3
Depth (m)	TCR	SCR	RQD	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend
21.00 21.00-21.15	100		_		25,25/50 SPT(C) 50/0		(6.50)		
22.50	100		_						0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
	100					41.30	F I		0.0.0 0.0.0
24.00 24.20	100	80	53			40.90	(0.40)	Very stiff brown slightly sandy gravelly CLAY with occasional sub-rounded cobbles. Gravel is fine to coarse sub-angular to sub-rounded Medium strong thickly laminated to thinly bedded dark grey fine grained LIMESTONE with calcite veins partially to distinctly weathered. Interbedded with a weak thickly laminated brown/black MUDSTONE partially to distinctly weathered Sequence contains one set of fractures. F1 is medium spaced, dipping between 20-30 degrees, planar rough with some Clay smearing	
25.50	100	73	63	5		38.20			
26.90 27.00	100	36	16	6		38.20	26.90	Medium strong thickly laminated to thinly bedded dark grey fine grained LIMESTONE with calcite veins partially to distinctly weathered. Interbedded with a weak thickly laminated brown/black MUDSTONE partially to distinctly weathered Sequence contains two sets of fractures. F1 is very close to closely spaced, dipping between 20-30 degrees, undulating rough with clay infilling. F2 are widely spaced, dipping between 75-85 degrees, planar smooth with sme clay smearing Residual rock recovered as a brown sandy slightly	
28.50						36.60		28.40m BGL Complete at 28.50m	
Remarks								Scale (approx) 1:50	S Kealy
								Figure 7687-0	No. 04-18.BH0

Flush : P	44 olymer		10	Diamete Omm cas 2mm cas	ww.gii.ie sed to 3.60m sed to 27.50m ed to 38.00m		Level (mOD) 67.81	Client DAA	Job Num 7687-	nber
Core Dia: 10 Method : G R		& HQ	Locatio		E 244020.6 N		3/05/2018- /06/2018	Engineer Balfour Beatty	She 1	et /4
Depth (m)	TCR	SCR	RQD	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legei	nd
							(1.20)	OPEN HOLE		
1.20-1.65 1.20					1,1/3,2,2,3 SPT(C) N=10 B	66.61	(0.80)	Firm brown slightly sandy gravelly CLAY with occasional sub-rounded cobbles. Gravel is fine to coarse sub-angular to sub-rounded		<u><u></u></u>
2.00-2.45 2.00					3,9/9,10,14,17 SPT(C) N=50 B	65.81 65.51	(0.30)	Stiff brown slightly sandy gravelly CLAY with occasional sub-rounded cobbles. Gravel is fine to coarse sub-angular to sub-rounded		<u>ି ବାନ୍ତି କା</u> ର୍ଦ୍ୟ
3.00-3.15					25,25/50 SPT(C) 50/0	64.81	(0.70)	Very stiff brown slightly sandy gravelly CLAY with occasional sub-rounded cobbles. Gravel is fine to coarse sub-angular to sub-rounded Very stiff black slightly sandy gravelly CLAY with occasional		<u><u></u></u>
3.00 3.60			-		B		(0.90)	sub-rounded cobbles. Gravel is fine to coarse sub-angular to sub-rounded	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<u> </u> 0. 0. 0. 0.
	86					63.91	3.90	Very stiff brown/grey slightly sandy gravelly CLAY with occasional sub-rounded cobbles. Gravel is fine to coarse sub-angular to subrounded	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<u> 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</u>
4.70 4.70-4.85	100		_		14,19/50 SPT(C) 50/0			Lense of brown sandy clayey sub-angular to sub-rounded fine to coarse GRAVEL occurs between 4.60m - 4.90m BGL		<u>ૡૺૺૺૺૺૺૺઌ૽ૼૡૺૺૺૺૺૺૺૺઌૺૺૺૺૺૺૺૺૺઌ૽ૺૡૺૺૺૺૺૺઌ</u> ૽
3.20 5.20-6.35	100				23,25/50 SPT(C) 50/0		(5.60)			<u>ૄૺઌ૽ૺ૾ૺૡૺૢ૽ઌ૽ૺૢ૾ૺૡૺૢ૽ઌ૽ૼૢૺૡ</u> ૿ઌ૽ૼૢૺ
7.70 7.70-7.85	100		_		22,25/50 SPT(C) 50/0					<u>ૺ૾ૺૡૺ</u> ૺૻ૾ઌ૽૾૾ૺ૾૾ૡૺૺ૽ઌ૽ૼૺ૾ૺ૾ૺઌ
9.20 9.20-9.35	100				25,25/50 SPT(C) 50/0	58.31	9.50	Residual Rock - Recovered as very stiff brown slightly sandy gravelly CLAY with relic bedding fabric throughout and lenses of fine brown Sand		<u>ؖ؞ٳ؞ؘٳ؞ؘۥ</u> ٳڞ۬ٳڲۄٳڞ
Remarks Air excavatio	ons carried	out to 1.2	0m BGL 3.60m BC	SL due tr	Obstrction - Presum	ed Boulder		Scale (appro:	() Log	ged
Geobore S to	echniques al HQ Rotar ckfilled with	carried ou ry Techniq n bentonite	it from 3.6 ues carrie e upon co	0m to 2 ed out fro	7.50m BGL om 27.50m to 31.50m			1:50 Figure	S Ke	ealy

		Grou	nd In		igations Ire ww.gii.ie	land	Ltd	Site Additional Airfield Boreholes	Borehole Number BH06
Machine : Dando 2000 Beretta T44 Casing Diameter 200mm cased to 3.60m Flush : Polymer 102mm cased to 27.50m Core Dia: 1028.64 mm 64mm cased to 38.00m					sed to 27.50m		Level (mOD) 67.81	Client DAA	Job Number 7687-04-18
Core Dia: 102&64 mm Method : Geobore S & HQ Rotary Coring			Location 315504.6 E 244020.6 N			Dates 18/05/2018- 11/06/2018		Engineer Balfour Beatty	Sheet 2/4
Depth (m)	TCR	SCR	RQD	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend
10.70			-		24,25/50	57.61	10.20	Residual Rock - Recovered as very stiff brown with orange and black mottling slightly sandy CLAY with relic bedding and occasional angular cobbles	0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0
10.70-10.85	100				SPT(C) 50/0				
12.20 12.20-12.35	100		_		25,25/50 SPT(C) 50/0				
13.70 13.70-13.85	100		-		25,25/50 SPT(C) 50/0	54.11		Residual Rock - Recovered as angular cobbles and boulders in a brown sandy CLAY matrix	
15.20			-						
16.70	100		_				(4.50)		
	100								
18.20	93					49.61		Residual Rock - Recovered as brown/grey with orange and black mottling CLAY with relic bedding and lenses of Sand	
19.70			_				(3.00)		
Remarks			1	<u> </u>	1			Scale (approx)	Logged By
								1:50 Figure	S Kealy

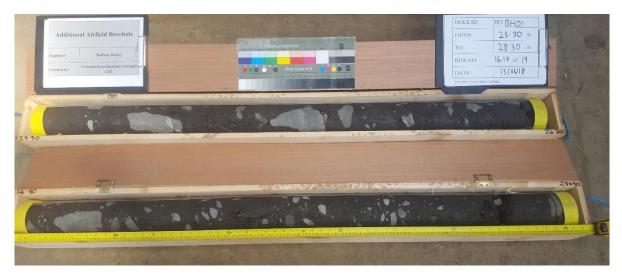
Machine : Dando 2000 Beretta T44 Flush : Polymer Gasing Diameter 200mm case 64mm case				vw.gii.ie r ed to 3.60m ed to 27.50m d to 38.00m		Level (mOD) 67.81	Client DAA	Job Number 7687-04-1	
Core Dia: 102&64 mm Method : Geobore S & HQ Rotary Coring			Location 315504.6 E 244020.6 N			Dates 18/05/2018- 11/06/2018		Engineer Balfour Beatty	Sheet 3/4
Depth (m)	TCR	SCR	RQD	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend
	96								
1.20	100		-			46.61	21.20	Weathered Rock - Recovered as medium strong laminated grey fine grained LIMESTONE distinctly weathered	
2.70 3.00	91.3		-			45.11	22.70	Residual Rock - Residual Rock - Recovered as angular cobbles and boulders in a brown sandy CLAY matrix with relic bedding	
	100		_			44.01	(0.70)	Weathered Rock - Recovered as medium strong laminated grey fine grained LIMESTONE distinctly weathered	
4.50	53						(1.50)	Residual Rock - Recovered as angular cobbles and boulders in a brown sandy CLAY matrix with relic bedding	
6.00	100					41.81	26.00	Residual Rock - Recovered as light brown with grey/black mottling CLAY with occasional lenses of Sand	
7.50			_			40.31		Weathered Rock - Recovered as angular cobbles of Limestone in a brown sandy Clay matrix	
	56					20.04			
9.00	80	43	43			38.81		Medium strong to strong laminated grey fine grained LIMESTONE partially to distinctly weatheredwith clay seams	
Remarks			1	<u> </u>	1		<u> </u>	Scale (approx)	Logge
								1:50	S Kea

Ground Investigations Ireland Ltd www.gii.ie								Site Additional Airfield Boreholes	Borehole Number BH06
Machine : Dando 2000 Beretta T44 Casing Diameter 200mm cased to 3.60m 102mm cased to 27.50m 64mm cased to 38.00m Core Dia: 102&64 mm				sed to 27.50m		Level (mOD) 67.81	Client DAA	Job Number 7687-04-18	
Method : G			Location 315504.6 E 244020.6 N			3/05/2018- /06/2018	Engineer Balfour Beatty	Sheet 4/4	
Depth (m)	TCR	SCR	RQD	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend
30.50				7			(2.50)	The sequence contains two sets of fractures F(1) are closely spaced, dipping between 10-20 degrees, planar to stepped rough with Clay smearing. F(2) are closely spaced, dipping between 70-90 degrees, planar to stepped rough with some Clay infilling	
31.50	93	59	50		_	36.31	31.50	Medium strong to strong laminated grey fine grained LIMESTONE partially to distinctly weatheredwith clay seams	
32.00	73	73	39	_					
33.50	83	50	20					The sequence contains two sets of fractures F(1) are closely spaced, dipping between 10-20 degrees, planar to stepped rough with Clay smearing. F(2) are closely spaced, dipping between 60-80 degrees, undulating to stepped rough with some surface staining and clay infilling	
35.00	80	40	55					Zones of non-intact between 32.0m to 32.05m BGL and 35.90m and 36.60m BGL	
36.50	22	20	20						
38.00						29.81		Complete at 38.00m	
Remarks							- - -	Scale (approx)	Logged By
								1:50 Figure 7687-0	S Kealy No. 14-18.BH06

Rotary Core – Photographs Additional Airfield Boreholes

BH01

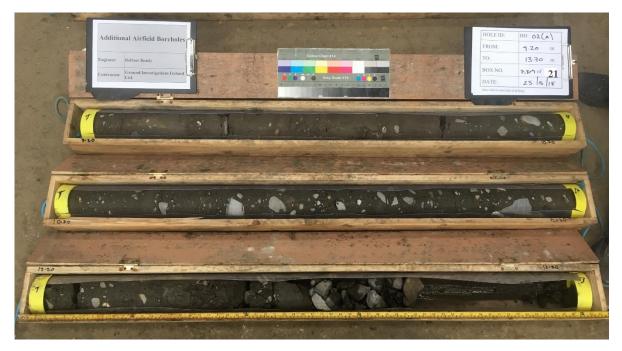
BH01


BH01

BH01

BH01

BH01



BH01

BH02A

BH02A

BH02A

BH03

BH03

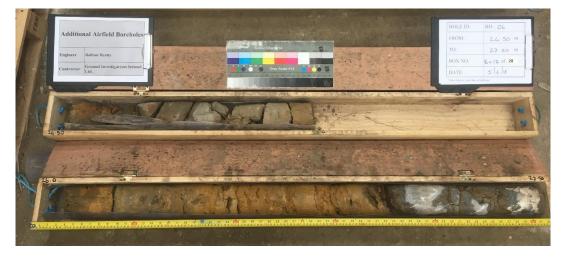
BH04

BH04

BH05

BH05

BH05



BH06

BH06

BH06

APPENDIX 3 – Laboratory Testing

Qty

13

13

23

1

6

6

Contract Number: 39874

Client Ref: **7687-04-18** Client PO:

Laboratory Report

Report Date: 17-07-2018

Client Ground Investigation Ireland Catherinestown House Hazelhatch Road Newcastle Co. Dublin

Contract Title: Additional Airfield Boreholes For the attention of: Stephen Kealy

Date Received: **30-06-2018** Date Commenced: **30-06-2018** Date Completed: **17-07-2018**

Test Description Moisture Content BS 1377 : Part 2 : 3.2 - * UKAS 4 Point Liquid & Plastic Limit (LL/PL) BS 1377 Part 2 : 4.3 & 5.3 - * UKAS PSD Wet Sieve method

BS 1377 : 1990 Part 2 : 9.2 - * UKAS

Organic Matter Content-dichromate method

1377 : 1990 Part 3 : 3 - @ Non Accredited Test

Water Soluble Sulphate 2:1 extract

1377 : 1990 Part 3 : 5 - @ Non Accredited Test

pH Value of Soil.

BS1377-3:1990 Cl9 - @ Non Accredited Test

Notes: Observations and Interpretations are outside the UKAS Accreditation

- * denotes test included in laboratory scope of accreditation
- # denotes test carried out by approved contractor
- @ denotes non accredited tests

This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved Signatories:

Alex Wynn (Associate Director) - Ben Sharp (Contracts Manager) - Emma Sharp (Office Manager) Paul Evans (Quality/Technical Manager) - Richard John (Advanced Testing Manager) - Sean Penn (Administrative/Accounts Assistant) Wayne Honey (Administrative/Quality Assistant)

GEO Site & Testing Services Ltd Unit 3-4, Heol Aur, Dafen Ind Estate, Dafen, Llanelli, Carmarthenshire SA14 8QN Tel: 01554 784040 Fax: 01554 784041 info@gstl.co.uk gstl.co.uk

1

Contract Number: 39874

Test Description Qty Quick Undrained Triaxial Compression test - single specimen at one confining pressure (100mm or 1 38mm diameter) BS1377 : 1990 Part 7 : 8 - * UKAS 4

(MCV) at as received Moisture Content BS1377:1990 Part 4 : 5.4 - * UKAS

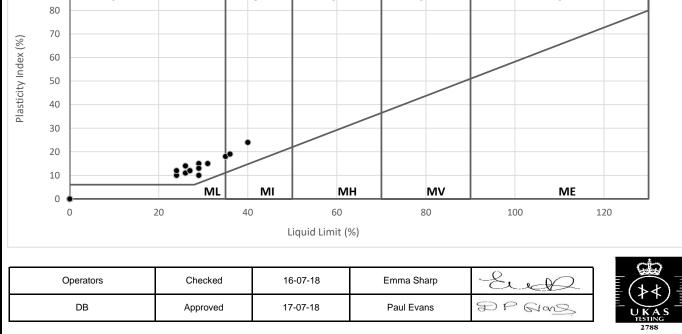
Disposal of Samples on Project

Notes: Observations and Interpretations are outside the UKAS Accreditation

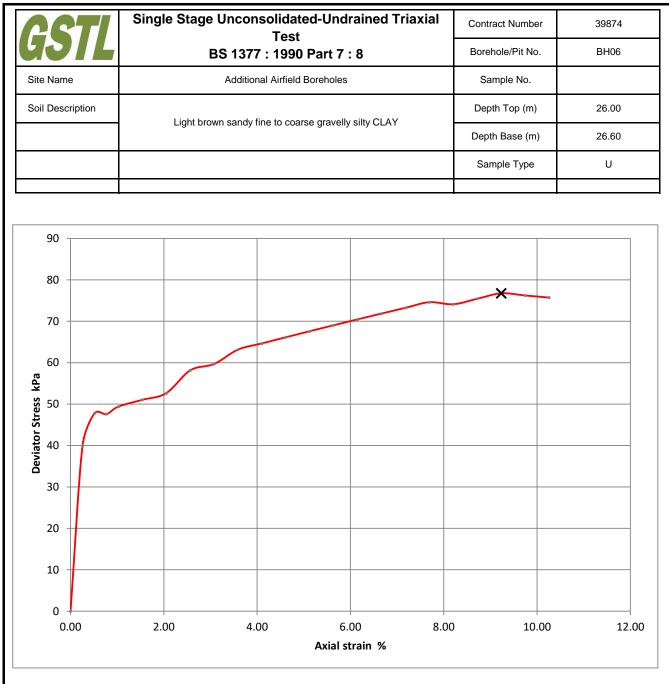
- * denotes test included in laboratory scope of accreditation
- # denotes test carried out by approved contractor
- @ denotes non accredited tests

This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved Signatories:


Alex Wynn (Associate Director) - Ben Sharp (Contracts Manager) - Emma Sharp (Office Manager) Paul Evans (Quality/Technical Manager) - Richard John (Advanced Testing Manager) - Sean Penn (Administrative/Accounts Assistant) Wayne Honey (Administrative/Quality Assistant)

LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX (BS 1377 : Part 2 : 1990 Method 5)

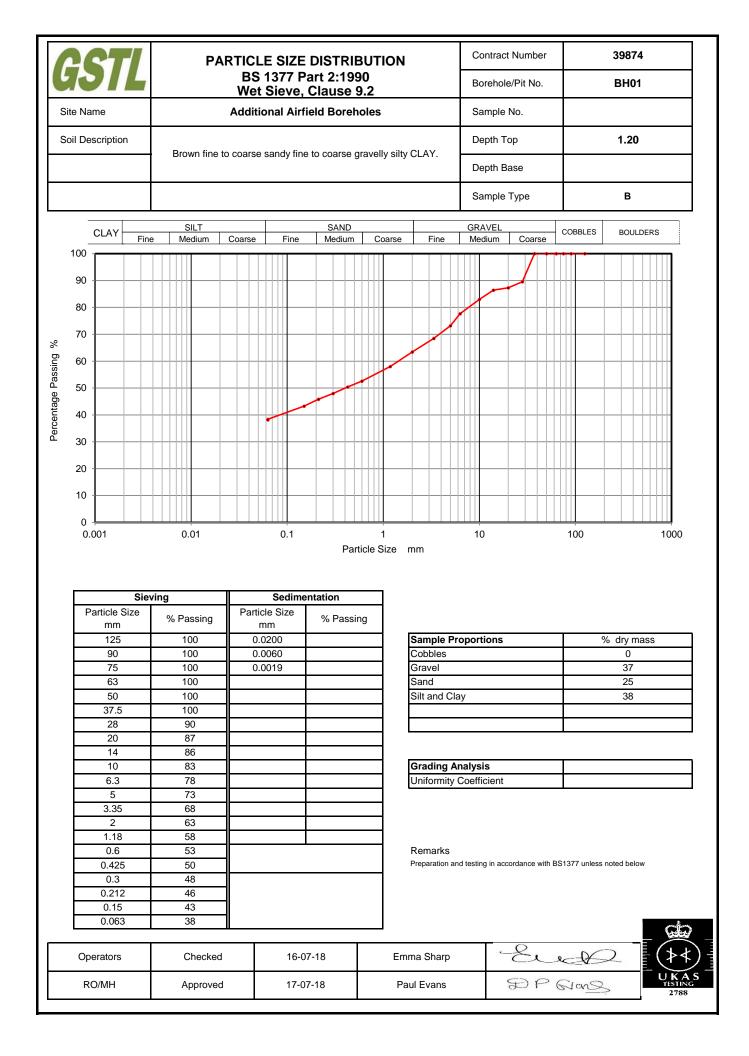

	$(B3 1377 \cdot Part 2 \cdot 1330 \text{ Method } 3)$	
Contract Number	39874	
Site Name	Additional Airfield Boreholes	

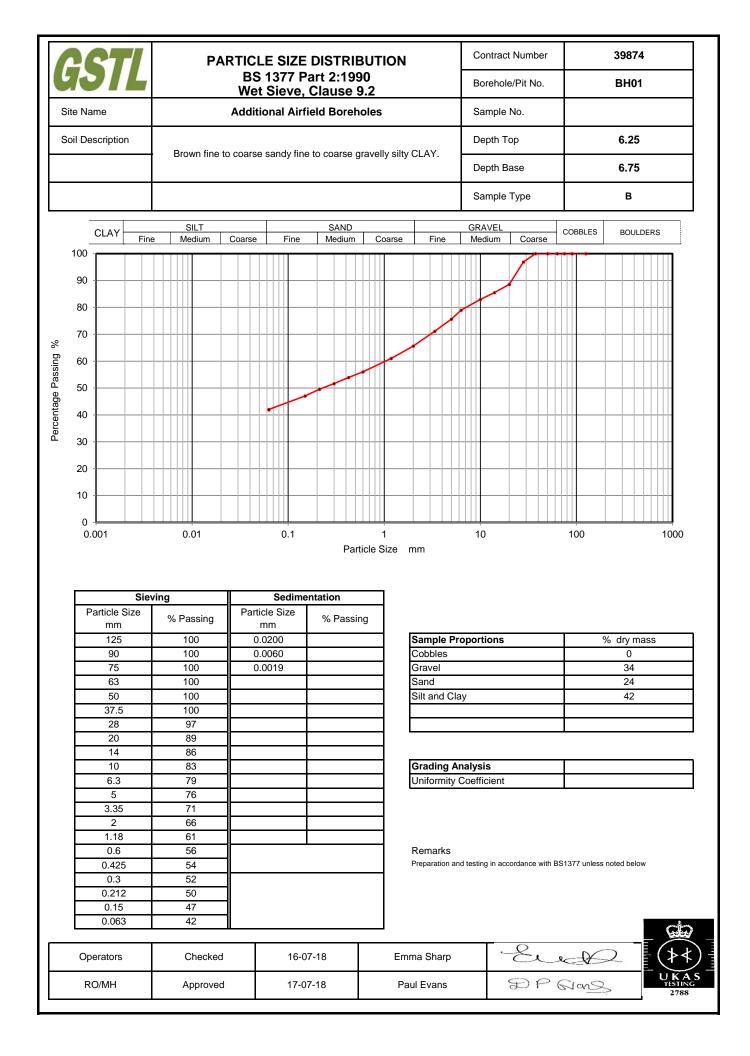
Hole Refere	Sample nce Number	Sample Type	Depth (m)		Moisture Content %	Liquid Limit %	Plastic Limit %	Plasticity index %	Passing .425mm %	Remarks		
BH01			1.20 -		10	29	14	15	50	CL Low Plasticity		
BH01			13.85	-	14.35	7.8	24	14	10	58	CL Low Plasticity	
BH01			27.80	-	28.30	16	26	15	11	59	CL Low Plasticity	
BH02A			1.70	-	2.40	16	24	12	12	48	CL Low Plasticity	
BH02A			12.20	-	12.80	7	27	15	12	60	CL Low Plasticity	
BH03			5.70	-	6.70	6.1	26	12	14	73	CL Low Plasticity	
BH04			14.70	-	15.00	12	29	19	10	85	CL Low Plasticity	
BH05			6.50	-		11	31	16	15	63	CL Low Plasticity	
BH05			4.70	-	5.10	6.9	29	16	13	46	CL Low Plasticity	
BH05			15.50	-	15.90	8.4		NP		4		
BH06			2.00	-		13	35	17	18	59	CL/I Low/Inter. Plasticity	
BH06			13.20	-	13.70	26	36	17	19	55	CI Intermediate Plasticity	
BH06			26.00	-	26.60	24	40	16	24	93	CI Intermediate Plasticity	
				-								
				-								
				-								
				-								
				-								
				-								
				-								
				-								
Symbols: NP	: Non Plastic	# : Liquid L	imit and Pla	astic Li	nit Wet Sie	ved	L	1	1			
		·			HART FO	R CASAGR 30:1999+A		ASSIFICA	TION			
⁹⁰	CL			CI		СН		V		CE		
80	-											

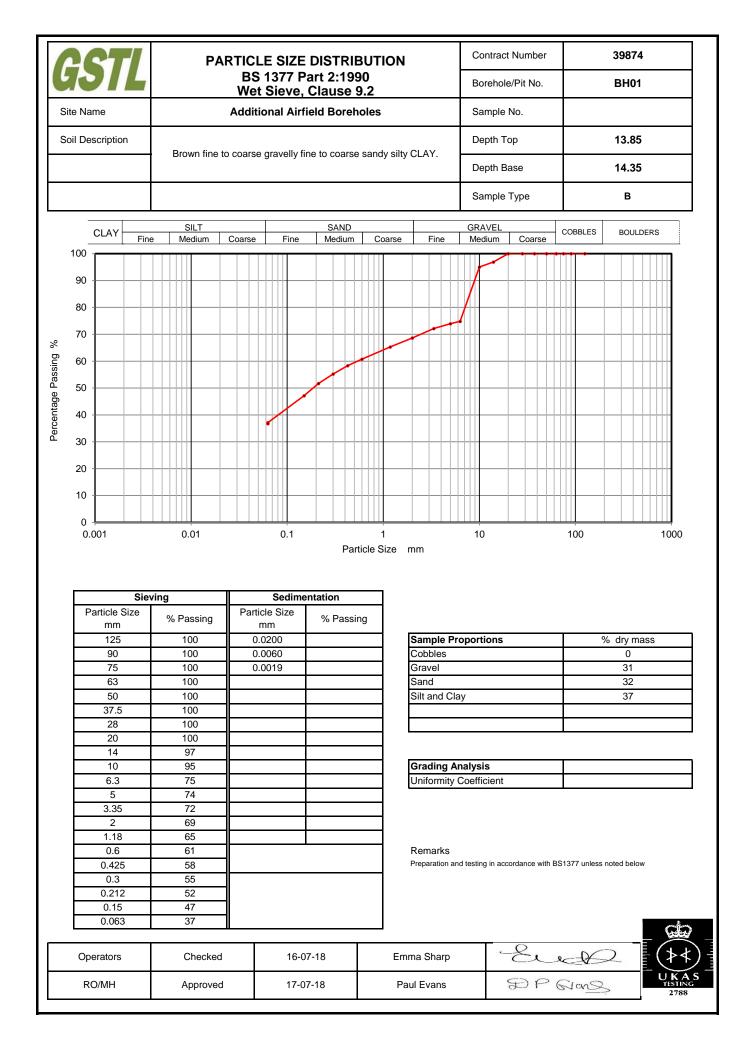
CCTI	Certificate of Chemical Analysis	Contract Number	39874
GOIL	onsuling	Client Reference	7687-04-18
Client	Ground Investigation Ireland	Date Received	
Site Name	Additional Airfield Boreholes	Date Started	12-07-18
		Date Completed	17-07-18
		No. of Samples	7

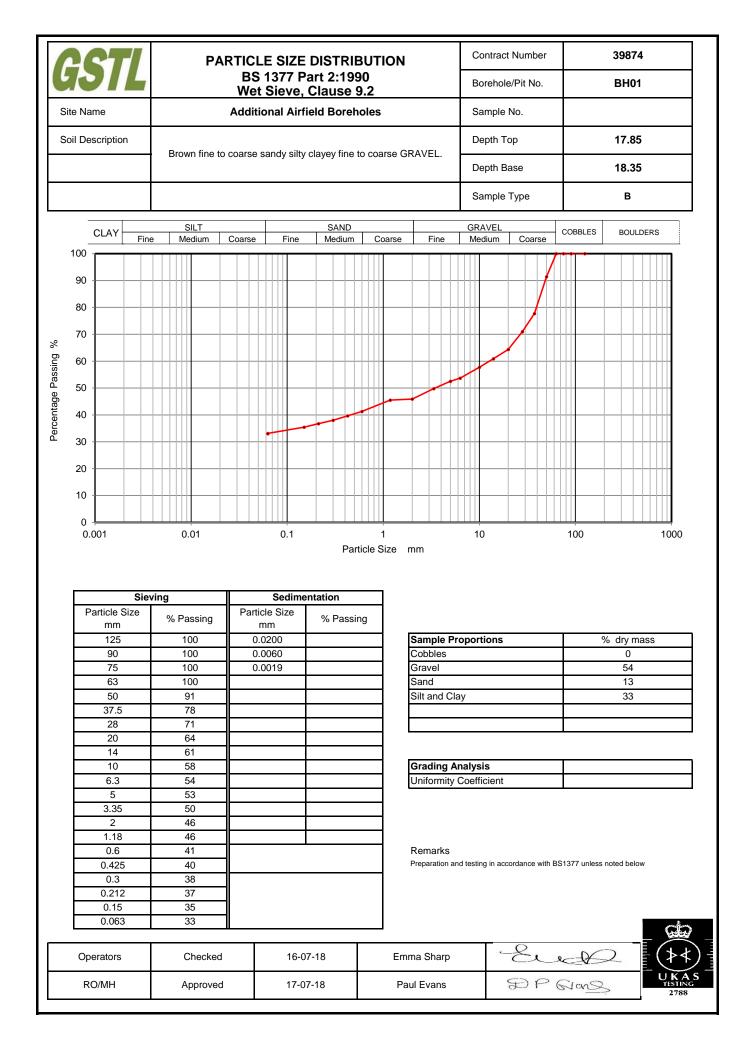
Hole Number	Sample Number	Sample Type	C	epth (i	m)	Acid Soluble Sulphate	Aqueous Extract Sulphate	Water Soluble Chloride	PH Value	Organic Matter Content	Acid Soluble Chloride	Loss O Ignitior
BH01		В	1.20	-					1	6.8		
BH01		С	6.25	-	6.75		0.03		7.41			
BH02A		С	22.10	-	22.70		0.02		7.69			
BH03		С	5.70	-	6.70		0.02		8.11			
BH04		В	6.50	-			0.03		6.94			
BH05		С	18.55	-	18.95		0.03		7.89			
BH06		С	13.20	-	13.70		0.03		8.01			
				-								
				-								
				-								
				-								
				-								
				-								
				-								
				-								
				-								
				-								
				-							-	
				-								
				-								
				-								
				-								
				-								
				-								
				-								
				-								
				-								
				-								
				-								
Key		Repor	ted As		Claus	e		Ren	narks			
Acid Soluble	Sulphate	% \$	SO3		Clause 5.2	& 5.5	N		loride Prese	ent		
Aqueous Extrac	-	g/I \$			Clause 5.3							
2/1 Chlo			6	1	Clause		1					
PH Val			25°		Clause							
Organi	с	9	6		Clause	3						
Redox I	٧v	N	1v		Clause	4						
LOI		9	6		Clause	4						
Test Operate	or	Checke	d and Auth	orised	by	_						
Darren Bourr	ne	Date		17-0	7-18	Ben	Sharp	G		\sim		

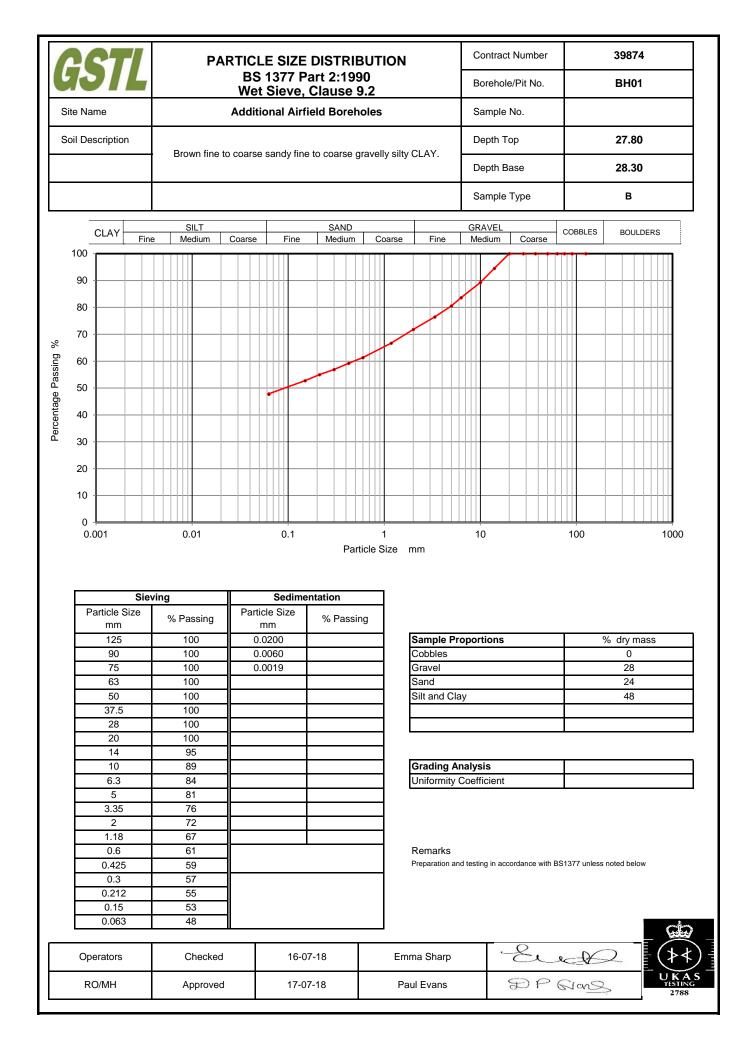
Moisture Content (%)	33
Bulk Density (Mg/m ³)	2.07
Dry Density (Mg/m ³)	1.56
Specimen Length (mm)	195
Specimen Diameter (mm)	103
Cell Pressure (kPa)	530
Deviator Stress (kPa)	77
Undrained Shear Strength (kPa)	38
Failure Strain (%)	9.23
Mode Of Failure	Plastic
Membrane Used/Thickness	Rubber/0.3mm
Rate of Strain (%/min)	1.00

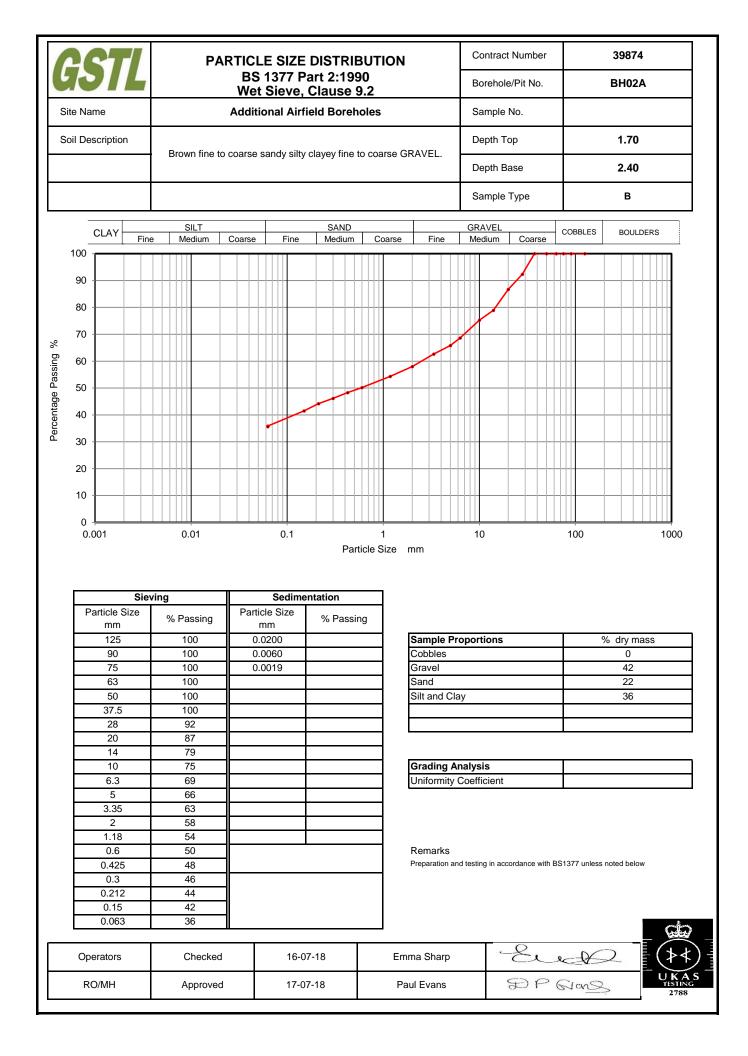

Specimen Post Test

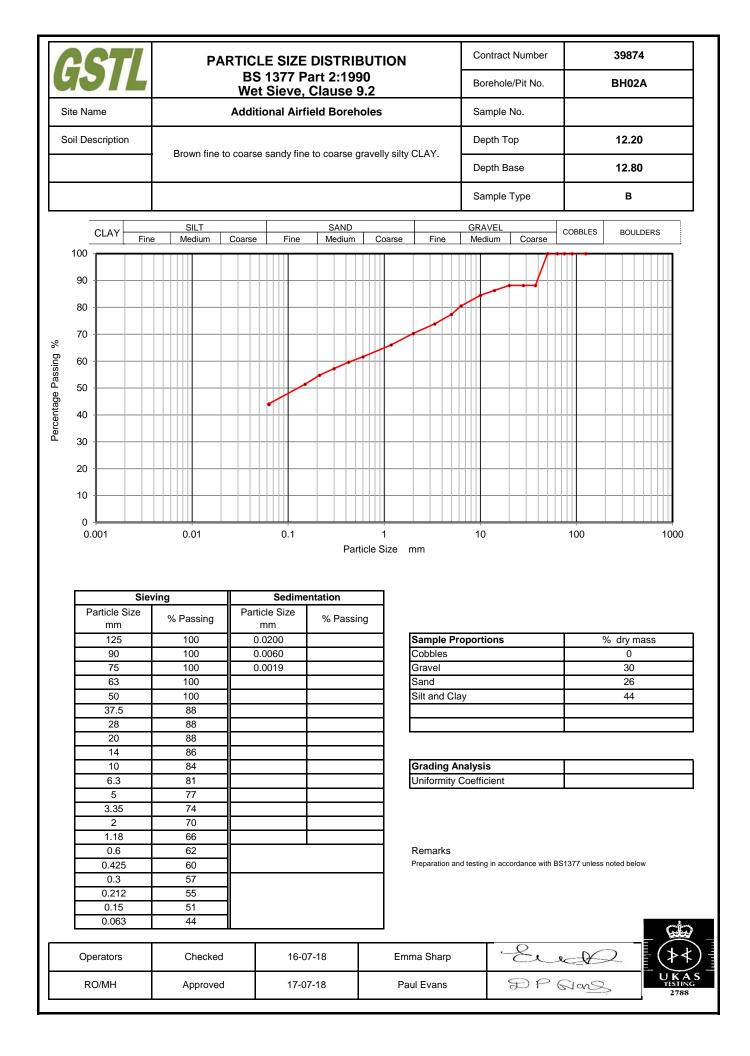

Sample Split

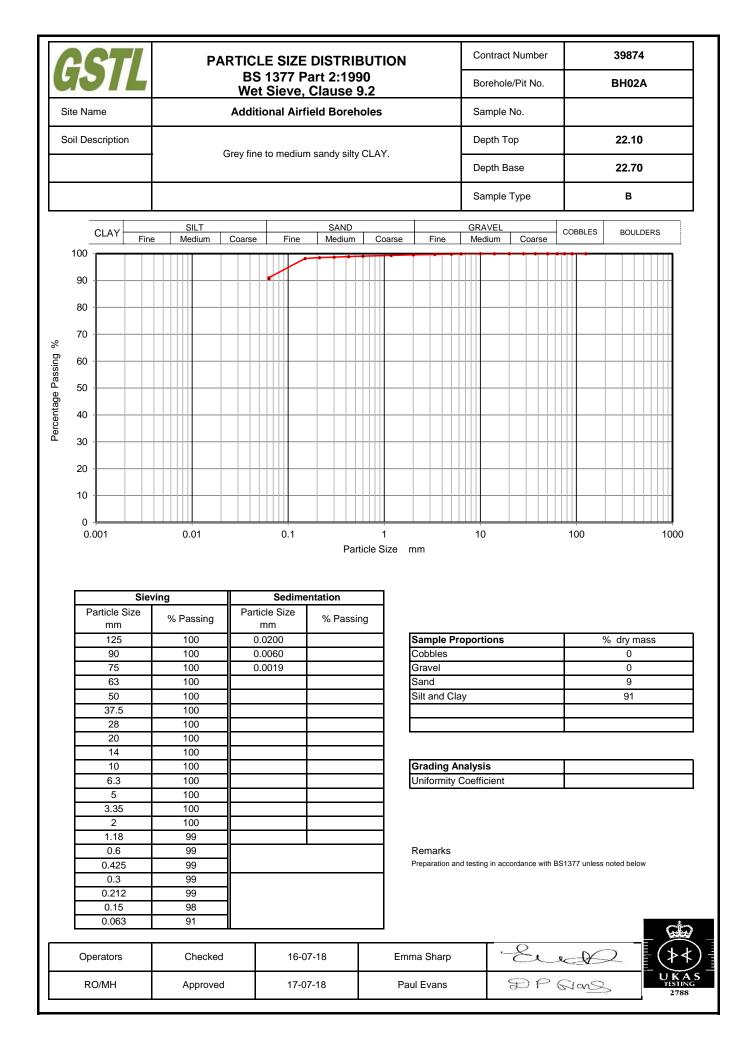

man

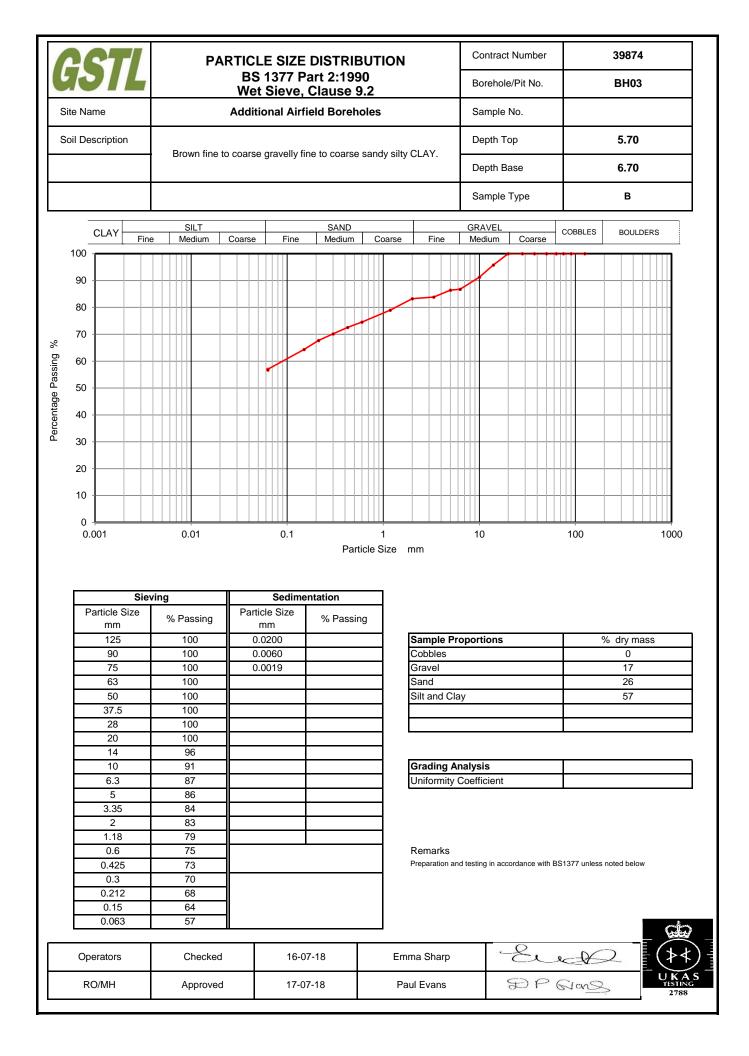


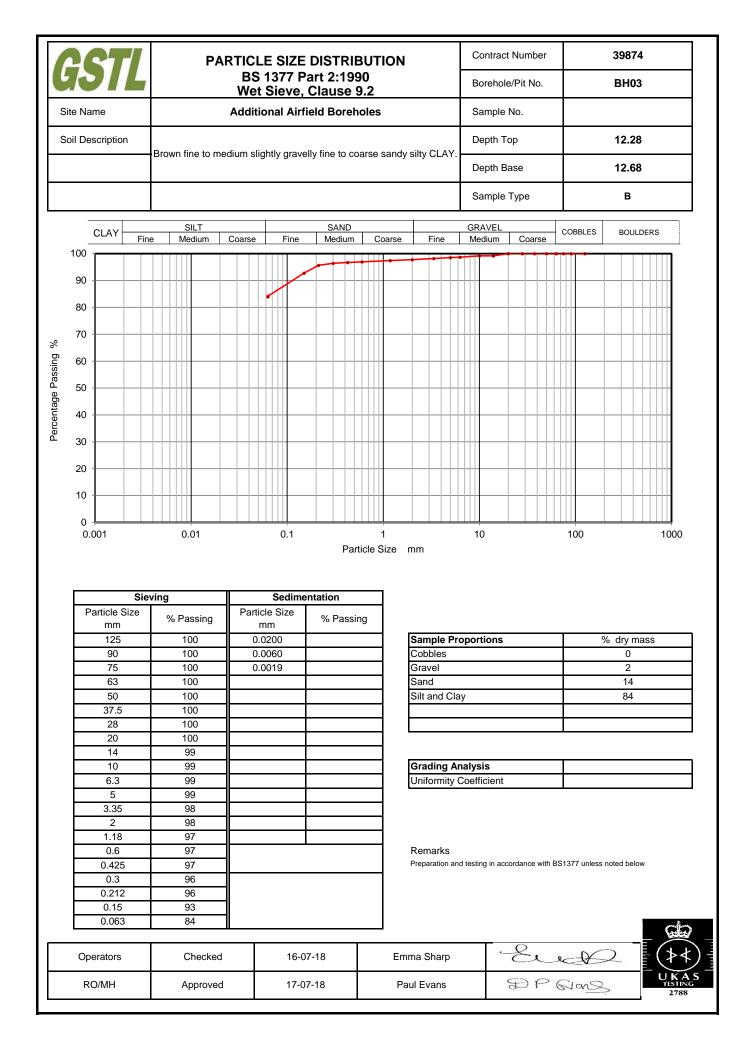

				1.000 1000
Checked	16-07-18	Emma Sharp	-Euch	
Approved	17-07-18	Paul Evans	DP Grons	
				2788

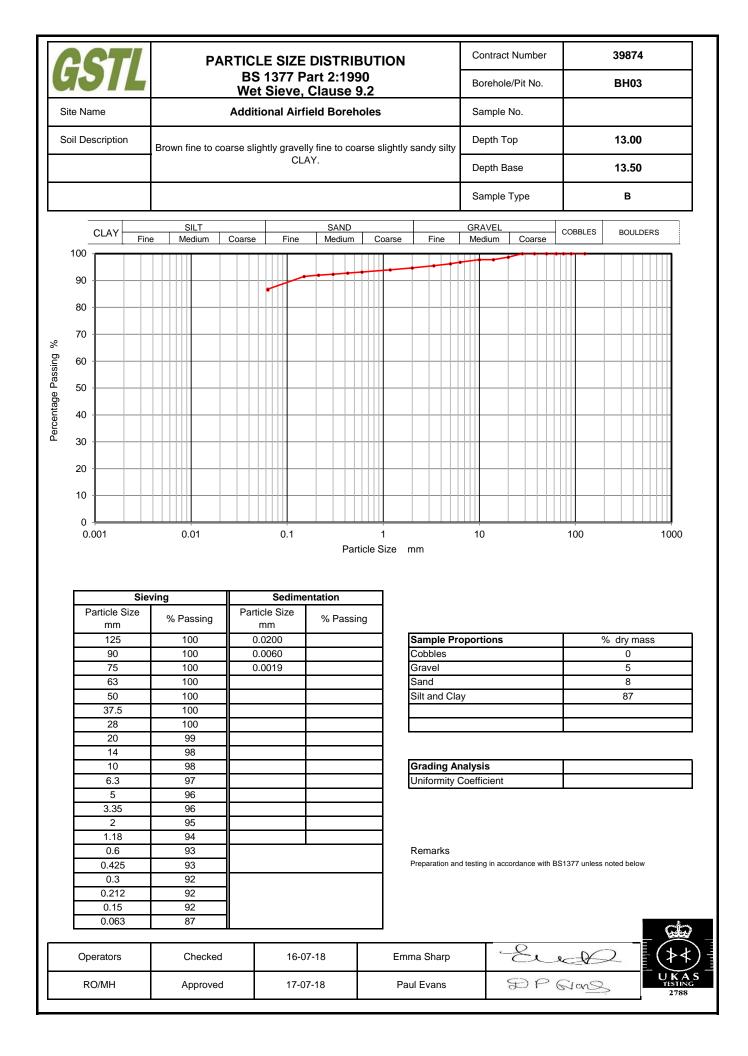


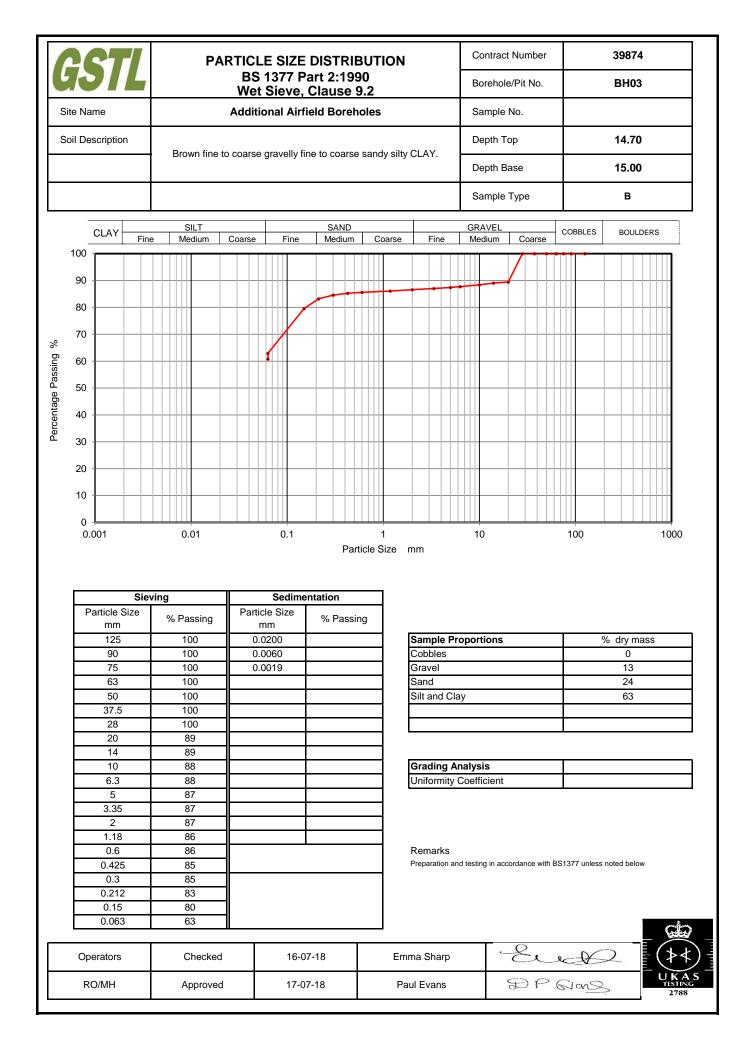


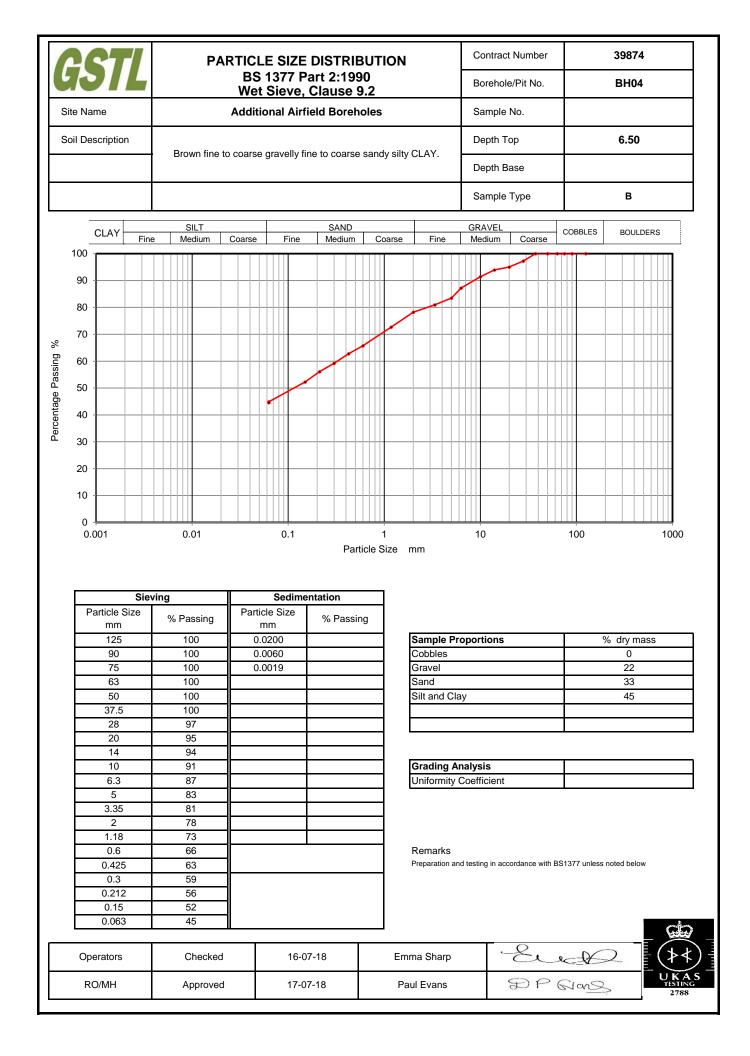


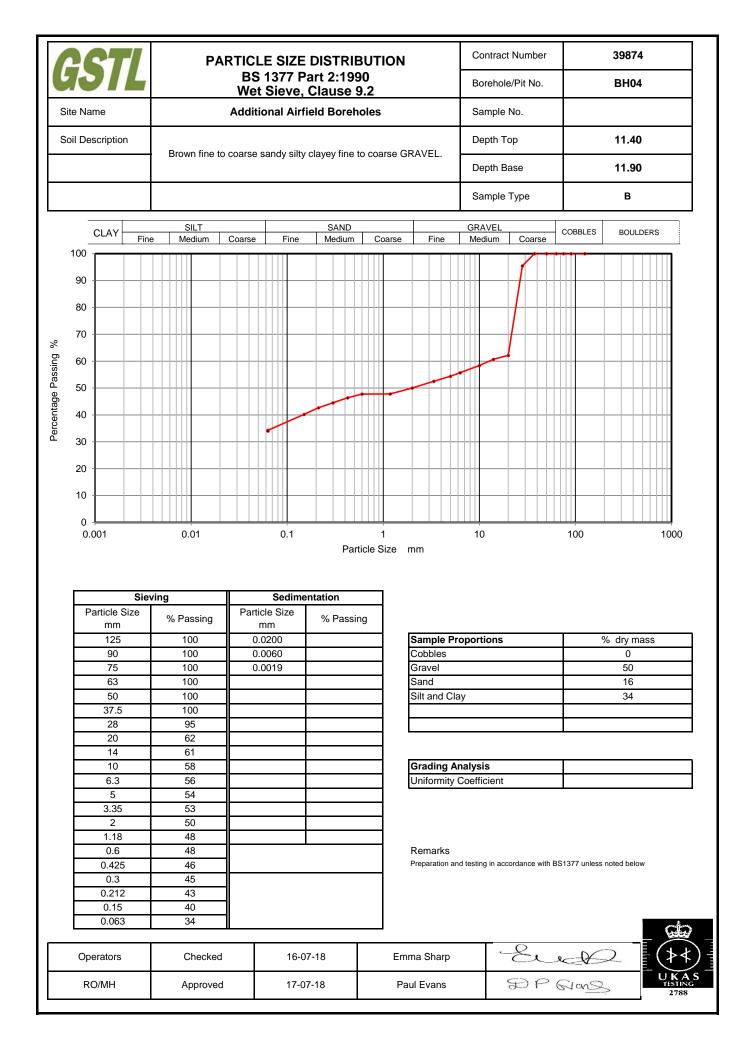


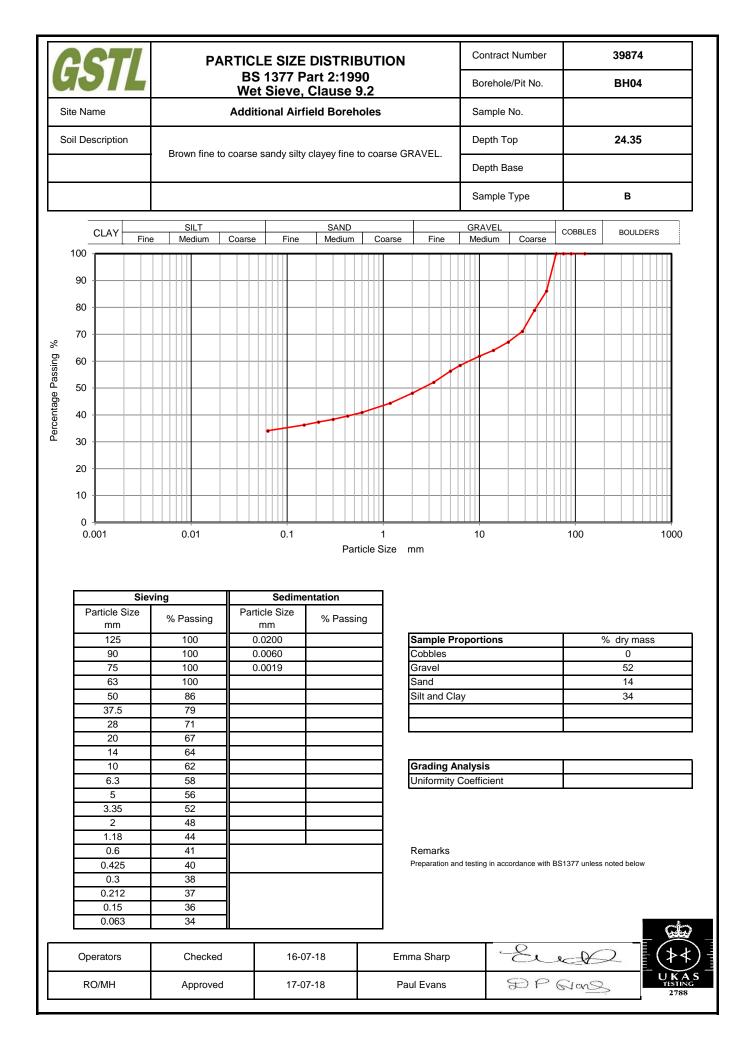


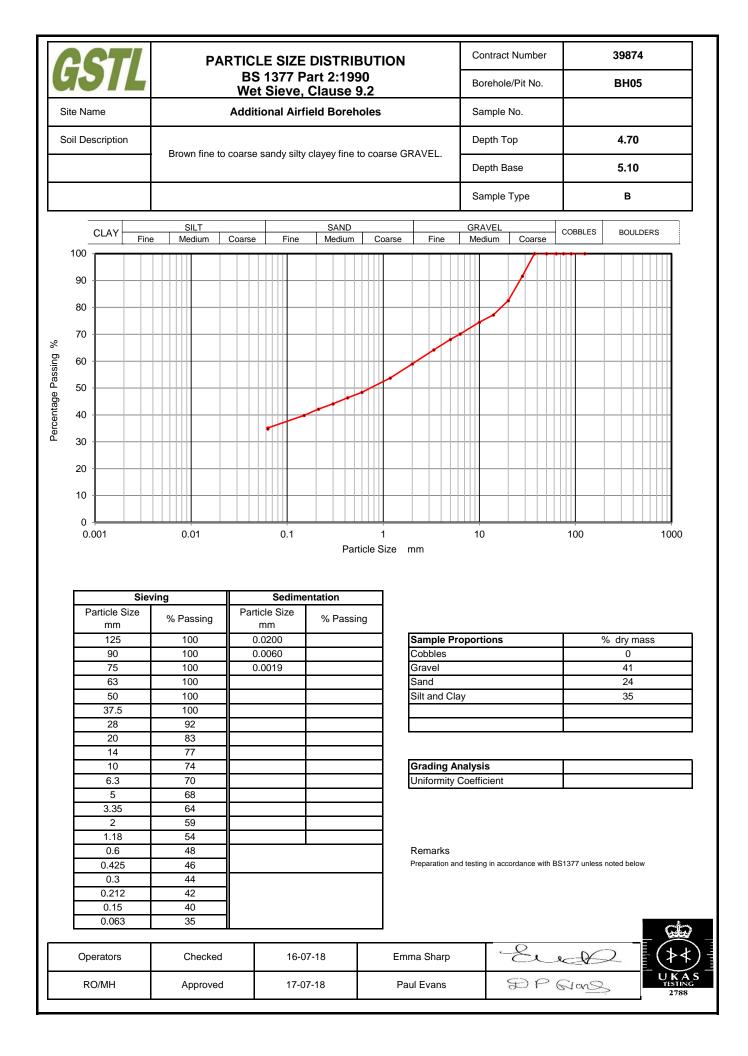


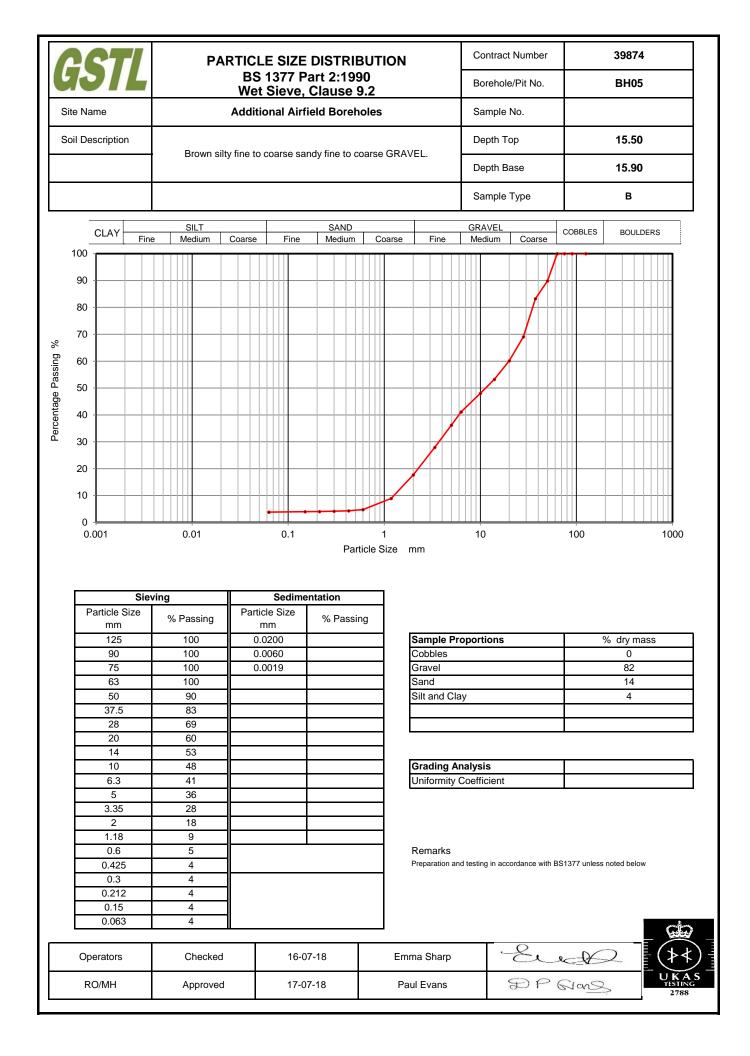


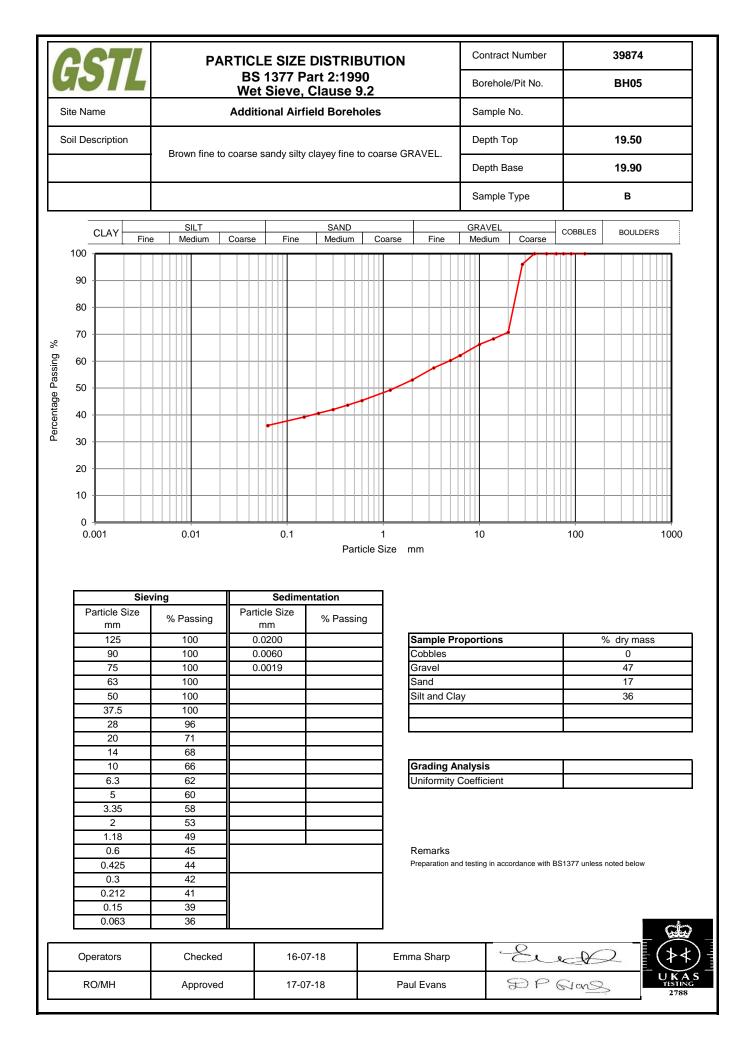


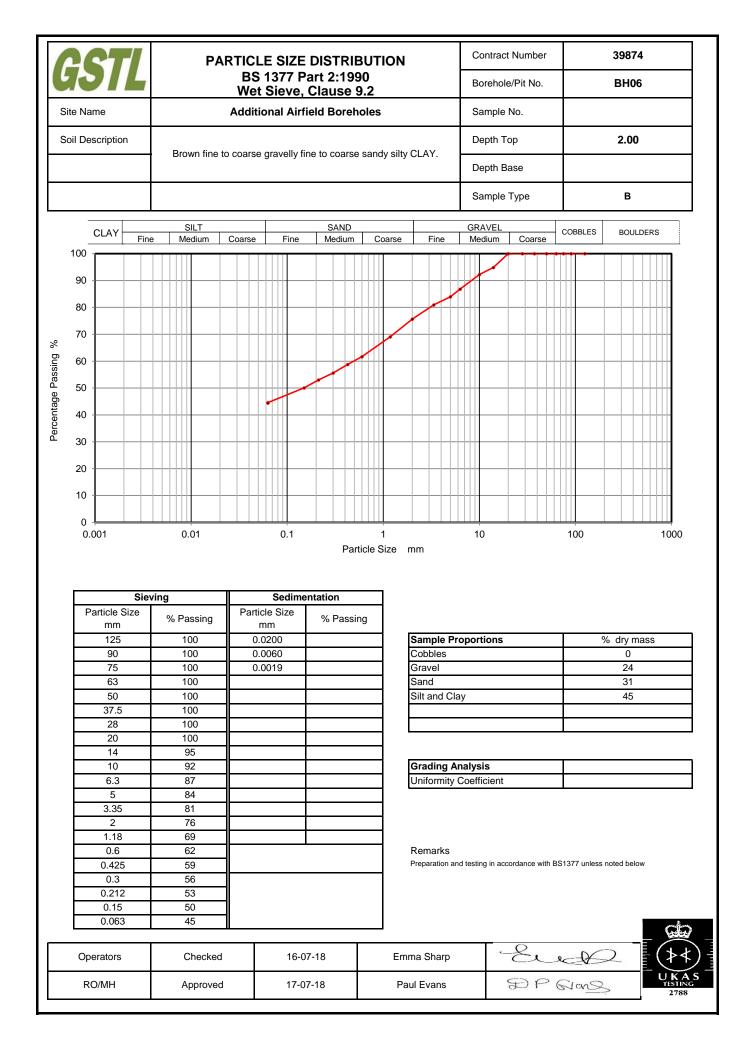


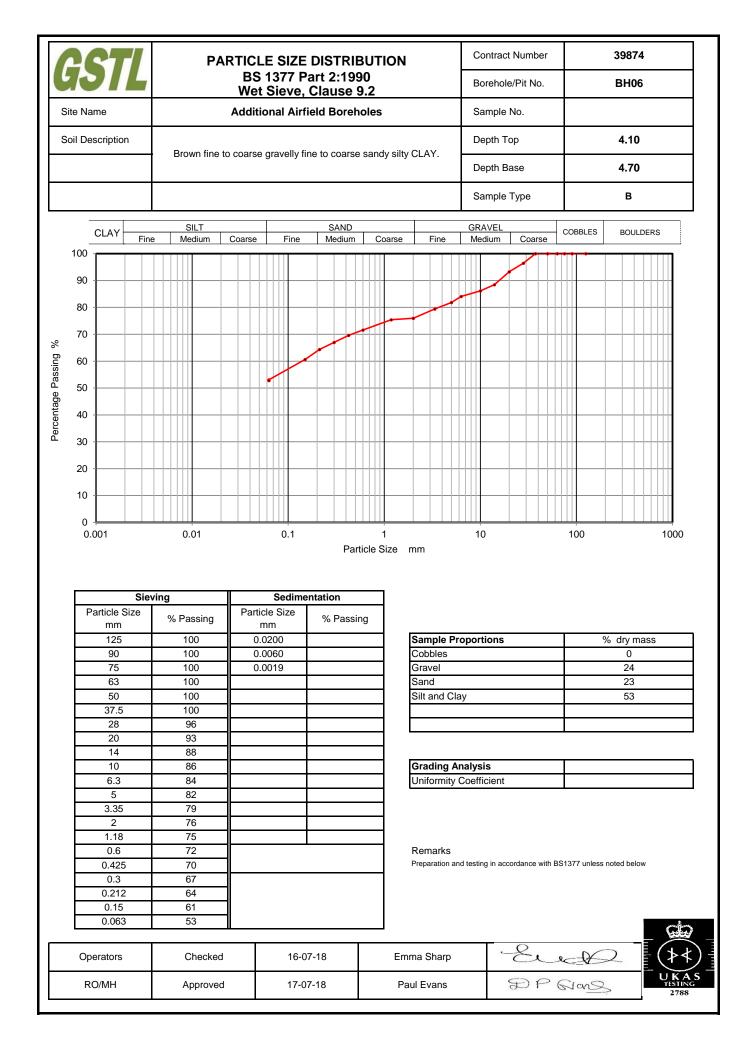


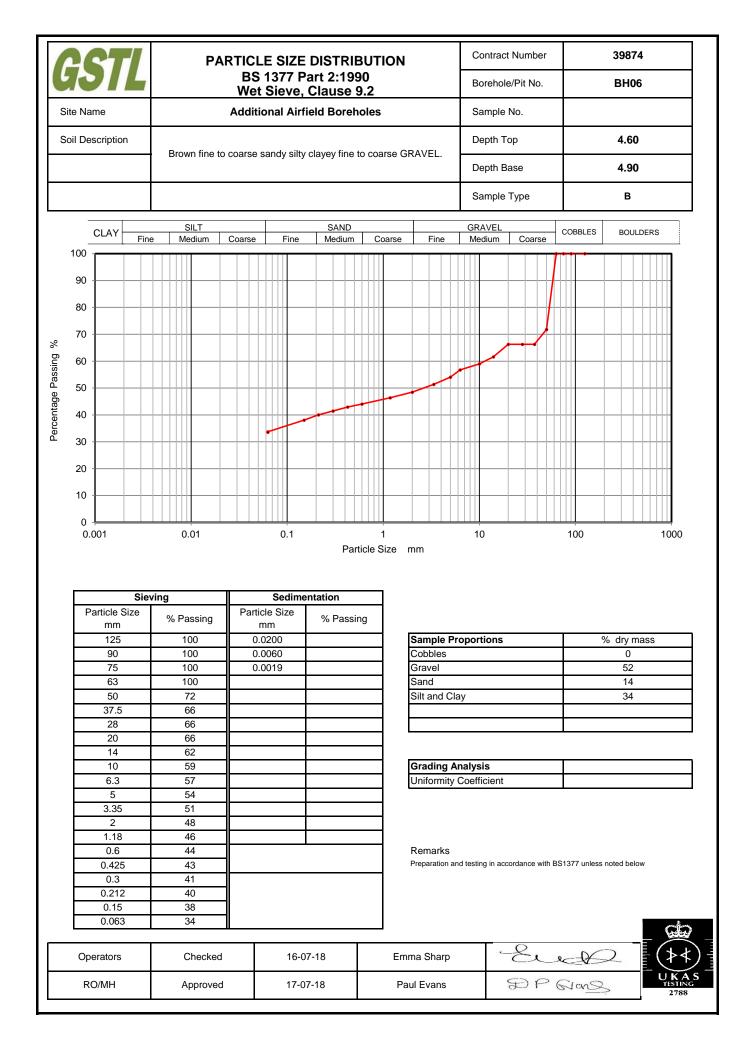


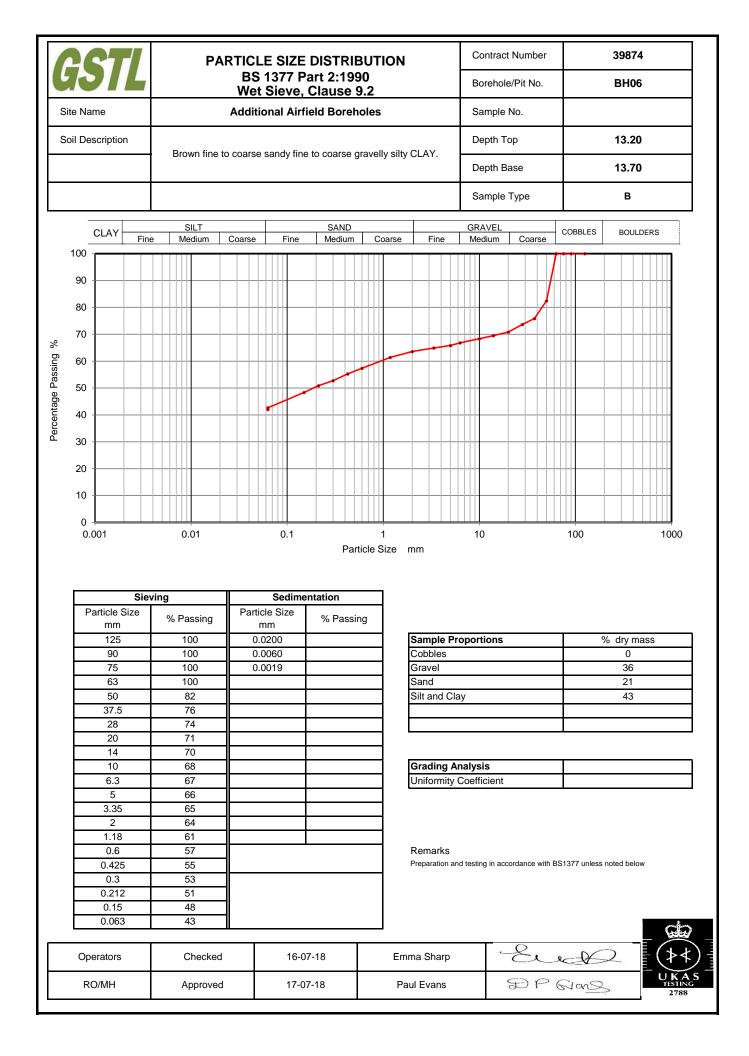


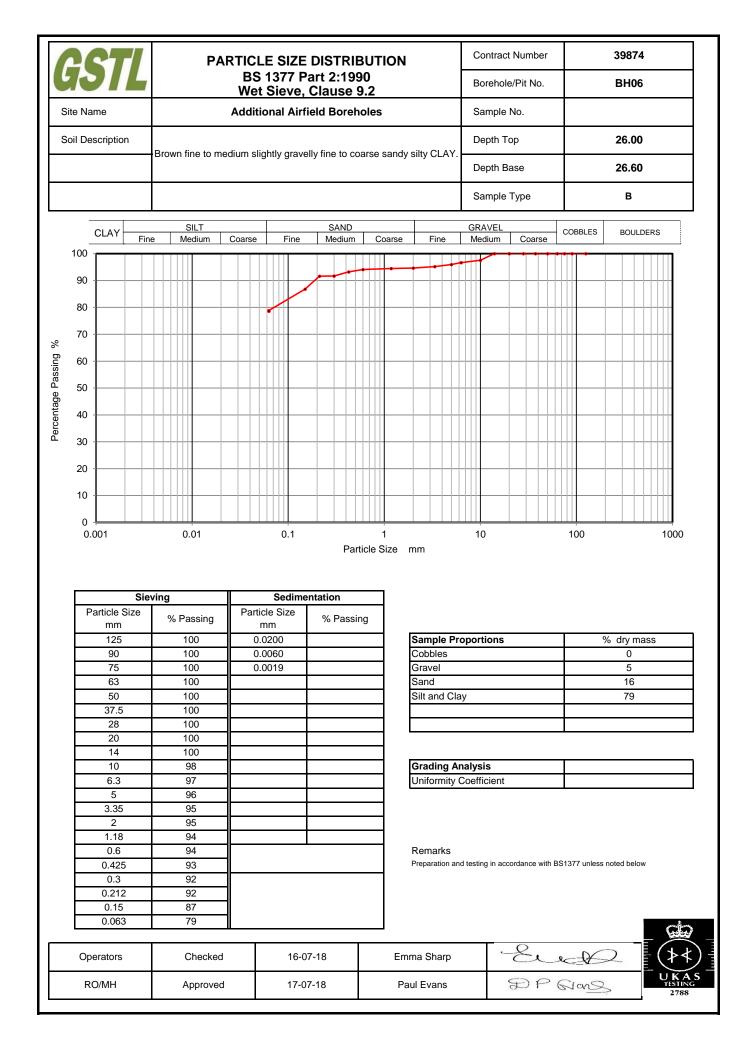


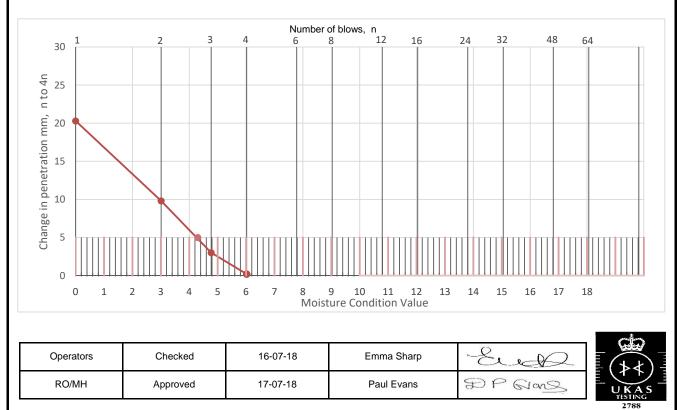






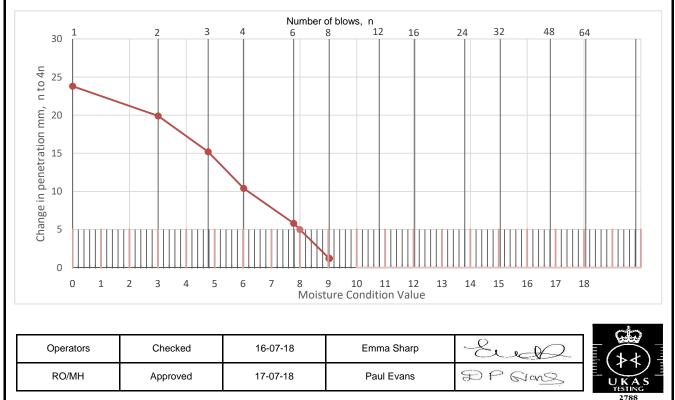






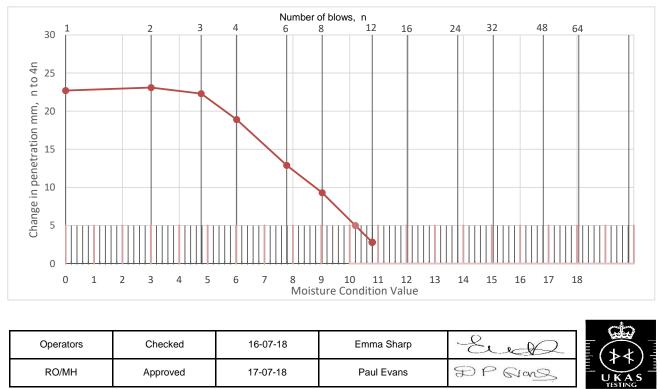
CCTI	Moisture Condition Value	Contract Number	39874
GJIL	BS1377:Part4:1990:Clause 5.4	Borehole/Pit No.	BH01
Site Name	Additional Airfield Boreholes	Sample No.	
Soil Description	Brown fine to modium grouply oildy CLAV	Depth Top	2.00
	Brown fine to medium gravelly silty CLAY.	Depth Base	
		Sample Type	В

Number of blows	Penetration mm	Change in Penetration n to 4n blows
1	66.1	20.3
2	55.4	9.8
3	48.6	3.0
4	45.8	0.2
6	45.6	
8	45.6	
12	45.6	
16	45.6	
24		
32		
48		
64		
96		
128		
192		
256		


Material Retained 20mm (%)	3
Moisture Content (%)	11
MCV Value (%)	4.3

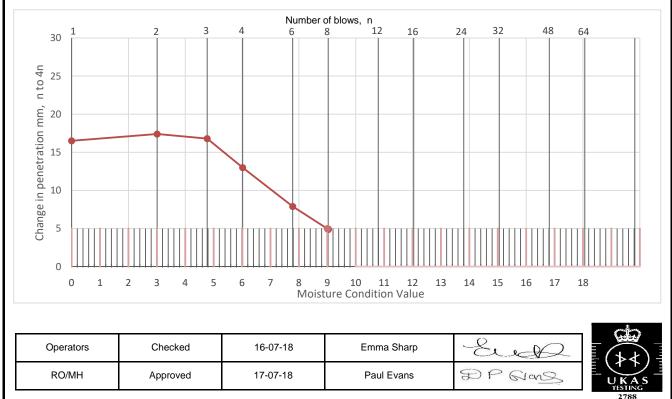
CCTI	Moisture Condition Value	Contract Number	39874
GOIL	BS1377:Part4:1990:Clause 5.4	Borehole/Pit No.	BH02A
Site Name	Additional Airfield Boreholes	Sample No.	
Soil Description	Brown fine to medium gravelly silty CLAY.	Depth Top	4.50
	Brown the to medium gravely sity CLAT.	Depth Base	
		Sample Type	В

Number of blows	Penetration mm	Change in Penetration n to 4n blows
1	69.3	23.8
2	56.2	19.9
3	50.3	15.2
4	45.5	10.4
6	40.9	5.8
8	36.3	1.2
12	35.1	
16	35.1	
24	35.1	
32	35.1	
48		
64		
96		
128		
192		
256		


Material Retained 20mm (%)	7.2	
Moisture Content (%)	11	
MCV Value (%)	8.0	

CCTI	Moisture Condition Value	Contract Number	39874
USIL	BS1377:Part4:1990:Clause 5.4	Borehole/Pit No.	BH05
Site Name	Additional Airfield Boreholes	Sample No.	
Soil Description	Brown fine to medium gravelly silty CLAY.	Depth Top	1.20
	Brown the to medium gravely sity CLAT.	Depth Base	
		Sample Type	В

Number of blows	Penetration mm	Change in Penetration n to 4n blows
1	80.3	22.7
2	69.7	23.1
3	62.4	22.3
4	57.6	18.9
6	50.3	12.9
8	46.6	9.3
12	40.1	2.8
16	38.7	
24	37.4	
32	37.3	
48	37.3	
64		
96		
128		
192		
256		


Material Retained 20mm (%)	9.2
Moisture Content (%)	14
MCV Value (%)	10.2

CCTI	Moisture Condition Value	Contract Number	39874
UJIL	BS1377:Part4:1990:Clause 5.4	Borehole/Pit No.	BH06
Site Name	Additional Airfield Boreholes	Sample No.	
Soil Description	Brown fine to medium gravelly silty CLAY.	Depth Top	3.00
	Brown me to medium gravely sity CLAT.	Depth Base	
		Sample Type	В

Number of blows	Penetration mm	Change in Penetration n to 4n blows
1	82.9	16.5
2	75.7	17.4
3	70.2	16.8
4	66.4	13.0
6	61.3	7.9
8	58.3	4.9
12	53.4	
16	53.4	
24	53.4	
32	53.4	
48		
64		
96		
128		
192		
256		

Material Retained 20mm (%)	4.8
Moisture Content (%)	6.0
MCV Value (%)	9.0

Trinity College Dublin Coláiste na Tríonóide, Baile Átha Cliath The University of Dublin Geotechnical Laboratory, Civil, Structural & Environmental Engineering & Environmental Engineering Trinity College, Dublin.2.

Ground Investigations Ireland Ltd, Catherinestown House, Hazelhatch Road, Newcastle, Co. Dublin

+353 1 8961009 edunne@tcd.ie

Unconfined Compression Tests On Rock Cores

Project No: 7687 - 04 - 18

Delivery Date: 09.07.2018

Test Date: 16.07.2018

Borehole Number	Depth (m)	Average Diameter (mm)	Height (mm)	Length/Dia. (Ratio)	Unconfined Compressive Strength (Mpa)	Density (Mg/m ³)
BH - 02A	32.15	62.7	171.1	2.73	99.0	2.72
BH - 03	19.60 - 19.95	101.6	187.7	1.85	86.5	2.71
BH - 04	28.55	63.2	143.3	2.27	61.7	2.73
BH - 05	26.35 - 26.75	101.8	200.3	1.97	90.8	2.64
BH - 06	35.40	63.1	171.5	2.72	29.3	2.67

Prof. B. O'Kelly

Specimens prepared and tested in accordance with suggested method from International Society for Rock Mechanics (ISRM), 1985

Trinity College Dublin Coláiste na Tríonóide, Baile Átha Cliath The University of Dublin

Geotechnical Laboratory, Civil, Structural & Environmental Engineering & Environmental Engineering Trinity College, Dublin.2.

Ground Investigations Ireland Ltd, Catherinestown House, Hazelhatch Road, Newcastle, Co. Dublin

+353 1 8961009 edunne@tcd.ie

Point Load Index Tests (single diametral determination)

Project:	Additional Airfield Boreholes
Project No:	7687 - 04 - 18
Delivery date:	09.07.2018
Test Date:	16.07.2018

Diametric samples Borehole No.	Depth (m)	I _{s(50)} (Mpa)
BH - 01	28.55	0.82
BH - 01	31.63	1.48
BH - 01	32.30	4.16
BH - 02A	31.63	1.48
BH - 03	32.30	4.16
BH - 04	28.65	0.61
BH - 05	22.35	1.88
BH - 06	31.90	3.07

Prof. Brendan O'Kelly

Specimens prepared and tested in accordance with suggested method from International Society for Rock Mechanics (ISRM), 1985

JONES JONES ENVIRONMENTAL

Ground Investigations Ireland Catherinestown House

Hazelhatch Road

Newcastle Co. Dublin Ireland

Exova Jones Environmental

Registered Address : Exova (UK) Ltd, Lochend Industrial Estate, Newbridge, Midlothian, EH28 8P

Unit 3 Deeside Point Zone 3 Deeside Industrial Park Deeside CH5 2UA

Tel: +44 (0) 1244 833780 Fax: +44 (0) 1244 833781

Attention :	Stephen Kealy
Date :	16th July, 2018
Your reference :	7687-04-18
Our reference :	Test Report 18/10144 Batch 1
Location :	Additional Airfield Boreholes
Date samples received :	28th June, 2018
Status :	Final report
Issue :	1

Two samples were received for analysis on 28th June, 2018 of which two were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Where Waste Acceptance Criteria Suite (EC Decision of 19 December 2002 (2003/33/EC)) has been requested, all analyses have been performed using the relevant EN methods where they exist.

Compiled By:

Phil Sommerton BSc Project Manager

Client Name:
Reference:
Location:
Contact:
JE Job No.:

Ground Investigations Ireland 7687-04-18 Additional Airfield Boreholes Stephen Kealy 18/10144 Report : Solid

							1		
J E Sample No.	1-3	4-6							
Sample ID	BH04	BH04							
Denti	4.00	4.50							
Depth	1.30	1.50						e attached n ations and a	
COC No / misc							abbievi	alloris ariu al	Jonyms
Containers	VJT	VJT							
Sample Date	16/05/2018	16/05/2018							
Sample Type	Soil	Soil							
Batch Number	1	1							
							LOD/LOR	Units	Method No.
Date of Receipt									
Antimony	5	2					<1	mg/kg	TM30/PM15
Arsenic [#]	23.3	10.0					<0.5	mg/kg	TM30/PM15
Barium [#]	135 4.8	126 1.5					<1 <0.1	mg/kg	TM30/PM15 TM30/PM15
Cadmium [#] Chromium [#]	4.8 78.0	1.5 64.3					<0.1	mg/kg mg/kg	TM30/PM15 TM30/PM15
Copper [#]	51	23					<0.5	mg/kg	TM30/PM15
Lead [#]	36	14					<5	mg/kg	TM30/PM15
Mercury [#]	<0.1	<0.1					<0.1	mg/kg	TM30/PM15
Molybdenum [#]	9.6	6.1					<0.1	mg/kg	TM30/PM15
Nickel [#]	93.8	38.5					<0.7	mg/kg	TM30/PM15
Selenium #	2	3					<1	mg/kg	TM30/PM15
Zinc [#]	123	64					<5	mg/kg	TM30/PM15
PAH MS									
Naphthalene #	<0.04	<0.04					<0.04	mg/kg	TM4/PM8
Acenaphthylene	<0.03	<0.03					<0.03	mg/kg	TM4/PM8
Acenaphthene #	<0.05	<0.05					<0.05	mg/kg	TM4/PM8
Fluorene #	<0.04	<0.04					<0.04	mg/kg	TM4/PM8
Phenanthrene [#]	<0.03	<0.03					<0.03	mg/kg	TM4/PM8
Anthracene #	<0.04	<0.04					<0.04	mg/kg	TM4/PM8
Fluoranthene#	<0.03	<0.03					<0.03	mg/kg	TM4/PM8
Pyrene #	<0.03	<0.03					<0.03	mg/kg	TM4/PM8
Benzo(a)anthracene #	<0.06	0.12					<0.06	mg/kg	TM4/PM8
Chrysene [#]	<0.02	0.07					<0.02	mg/kg	TM4/PM8
Benzo(bk)fluoranthene #	<0.07	0.10					<0.07	mg/kg	TM4/PM8
Benzo(a)pyrene #	<0.04	<0.04					<0.04	mg/kg	TM4/PM8
Indeno(123cd)pyrene [#]	<0.04	<0.04					<0.04	mg/kg	TM4/PM8
Dibenzo(ah)anthracene *	<0.04 <0.04	<0.04 <0.04					<0.04 <0.04	mg/kg	TM4/PM8 TM4/PM8
Benzo(ghi)perylene [#] Coronene	<0.04	<0.04					 <0.04	mg/kg	TM4/PM8 TM4/PM8
PAH 6 Total [#]	<0.04	<0.04					<0.04	mg/kg mg/kg	TM4/PM8
PAH 6 Total PAH 17 Total	<0.22	<0.22					<0.22	mg/kg	TM4/PM8
Benzo(b)fluoranthene	<0.04	0.07					<0.04	mg/kg	TM4/PM8
Benzo(k)fluoranthene	<0.02	0.03					<0.02	mg/kg	TM4/PM8
Benzo(j)fluoranthene	<1	<1					<1	mg/kg	TM4/PM8
PAH Surrogate % Recovery	85	92					<0	%	TM4/PM8
Mineral Oil (C10-C40)	<30	<30					<30	mg/kg	TM5/PM8/PM16

Client Name:
Reference:
Location:
Contact:
JE Job No.:

Ground Investigations Ireland 7687-04-18 Additional Airfield Boreholes Stephen Kealy 18/10144 Report : Solid

							l		
J E Sample No.	1-3	4-6							
Sample ID	BH04	BH04							
Depth	1.30	1.50					Blooso so	e attached n	otos for all
COC No / misc								ations and a	
Containers	VJT	VJT							
Sample Date		16/05/2018							
Sample Type	Soil	Soil							
Batch Number	1	1							
							LOD/LOR	Units	Method No.
Date of Receipt	28/06/2018	28/06/2018							
TPH CWG									
Aliphatics		81/							
>C5-C6 #	<0.1	<0.1 ^{SV}					<0.1	mg/kg	TM36/PM12
>C6-C8 *	<0.1	<0.1 ^{SV}					<0.1	mg/kg	TM36/PM12
>C8-C10	<0.1	<0.1 ^{SV}					<0.1	mg/kg	TM36/PM12
>C10-C12#	<0.2	<0.2					<0.2	mg/kg	TM5/PM8/PM16
>C12-C16 [#]	<4	<4					<4	mg/kg	TM5/PM8/PM16
>C16-C21 #	<7	<7					<7	mg/kg	TM5/PM8/PM16
>C21-C35#	<7	<7					<7	mg/kg	TM5/PM8/PM16
>C35-C40	<7	<7					<7	mg/kg	TM5/PM8/PM16
Total aliphatics C5-40	<26	<26					<26	mg/kg	TM5/TM38/PM8/PM12/PM16
>C6-C10	<0.1	<0.1 ^{SV}					<0.1	mg/kg	TM36/PM12
>C10-C25	<10	<10					<10	mg/kg	TM5/PM8/PM16
>C25-C35	<10	<10					<10	mg/kg	TM5/PM8/PM16
Aromatics									
>C5-EC7 #	<0.1	<0.1 ^{SV}					<0.1	mg/kg	TM36/PM12
>EC7-EC8#	<0.1	<0.1 ^{sv}					<0.1	mg/kg	TM36/PM12
>EC8-EC10 [#]	<0.1	<0.1 ^{sv}					<0.1	mg/kg	TM36/PM12
>EC10-EC12#	<0.2	<0.2					<0.2	mg/kg	TM5/PM8/PM16
>EC12-EC16#	<4	<4					<4	mg/kg	TM5/PM8/PM16
>EC16-EC21 #	<7	<7					<7	mg/kg	TM5/PM8/PM16
>EC21-EC35#	<7	<7					<7	mg/kg	TM5/PM8/PM16
>EC35-EC40	<7	<7					<7	mg/kg	TM5/PM8/PM16
Total aromatics C5-40	<26	<26					<26	mg/kg	TM5/TM38/PM8/PM12/PM16
Total aliphatics and aromatics(C5-40)	<52	<52					<52	mg/kg	TM5/TM38/PM8/PM12/PM16
>EC6-EC10#	<0.1	<0.1 ^{SV}					<0.1	mg/kg	TM36/PM12
>EC10-EC25	<10	<10					<10		TM5/PM8/PM16
>EC10-EC25 >EC25-EC35	<10	<10					<10	mg/kg mg/kg	TM5/PM8/PM16
- 2020 2000	~10	~10					~10		. Wor wor with
MTBE [#]	<5	<5 ^{sv}					<5	ug/kg	TM31/PM12
Benzene [#]		<5 ⁵¹							TM31/PM12 TM31/PM12
	<5	<5 ⁵¹					<5	ug/kg	TM31/PM12 TM31/PM12
Toluene [#]	<5	<5 ⁵⁰					<5	ug/kg	
Ethylbenzene #	<5						<5	ug/kg	TM31/PM12
m/p-Xylene #	<5	<5 ^{SV}					<5	ug/kg	TM31/PM12
o-Xylene [#]	<5	<5 ^{\$V}					<5	ug/kg	TM31/PM12
PCB 28 [#]	<5	<5					<5	ug/kg	TM17/PM8
PCB 52#	<5	<5					<5	ug/kg	TM17/PM8
PCB 52	<5	<5					<5	ug/kg	TM17/PM8
PCB 101 PCB 118 [#]	<5	<5					<5	ug/kg	TM17/PM8
PCB 138 [#]	<5	<5					<5	ug/kg	TM17/PM8
PCB 138 ⁺ PCB 153 [#]	<5	<5					<5		TM17/PM8 TM17/PM8
PCB 153* PCB 180#		<5						ug/kg	
	<5						<5	ug/kg	TM17/PM8
Total 7 PCBs [#]	<35	<35					<35	ug/kg	TM17/PM8

Client Name:
Reference:
Location:
Contact:
JE Job No.:

Ground Investigations Ireland 7687-04-18 Additional Airfield Boreholes Stephen Kealy 18/10144 Report : Solid

JE JOD NO.:	18/10144								
J E Sample No.	1-3	4-6							
Sample ID	BH04	BH04							
Depth	1.30	1.50					Disease		
COC No / misc								e attached n ations and a	
Containers	VJT	VJT							
Sample Date	16/05/2018	16/05/2018							
Sample Type	Soil	Soil							
Batch Number	1	1							Method
Date of Receipt	28/06/2018	28/06/2018					LOD/LOR	Units	No.
Natural Moisture Content	29.9	13.3					<0.1	%	PM4/PM0
Moisture Content (% Wet Weight)	23.0	11.7					<0.1	%	PM4/PM0
Hexavalent Chromium #	<0.3	<0.3					<0.3	mg/kg	TM38/PM20
Chromium III	78.0	64.3					<0.5	mg/kg	NONE/NONE
Total Organic Carbon [#]	0.71	0.50					<0.02	%	TM21/PM24
рН#	8.18	8.84					<0.01	pH units	TM73/PM11
Mass of raw test portion Mass of dried test portion	0.1066	0.1031						kg kg	NONE/PM17 NONE/PM17
	0.00	0.00						iig	
		1		1					1

Ground Investigations Ireland 7687-04-18 Additional Airfield Boreholes Stephen Kealy 18/10144

Report : CEN 10:1 1 Batch

J E Sample No.	1-3	4-6					l		
							l		
Sample ID	BH04	BH04					1		
· · ·							1		
Depth	1.30	1.50					i		
								e attached n ations and a	
COC No / misc									
Containers	VJT	VJT					1		
Sample Date	16/05/2018	16/05/2018							
Sample Type	Soil	Soil					1		
Batch Number	1	1							Mathad
Date of Receipt	28/06/2018	28/06/2018					LOD/LOR	Units	Method No.
							.0.000		TM20/DM47
Dissolved Antimony [#]	0.002	<0.002					<0.002	mg/l	TM30/PM17
Dissolved Antimony (A10) *	0.02	<0.02					<0.02	mg/kg	TM30/PM17
Dissolved Arsenic [#]	<0.0025	<0.0025					<0.0025	mg/l	TM30/PM17
Dissolved Arsenic (A10)#	<0.025	<0.025					<0.025	mg/kg	TM30/PM17
Dissolved Barium #	0.003	0.011					<0.003	mg/l	TM30/PM17
Dissolved Barium (A10) #	0.03	0.11					<0.03	mg/kg	TM30/PM17
Dissolved Cadmium #	<0.0005	<0.0005					<0.0005	mg/l	TM30/PM17
Dissolved Cadmium (A10) #	<0.005	<0.005					<0.005	mg/kg	TM30/PM17
Dissolved Chromium [#]	<0.0015	<0.0015					<0.0015	mg/l	TM30/PM17
Dissolved Chromium (A10) #	<0.015	<0.015					<0.015	mg/kg	TM30/PM17
Dissolved Copper [#]	<0.007	<0.007					<0.007	mg/l	TM30/PM17
Dissolved Copper (A10)#	<0.07	<0.07					<0.07	mg/kg	TM30/PM17
Dissolved Lead [#]	<0.005	<0.005					<0.005	mg/l	TM30/PM17
Dissolved Lead (A10) #	<0.05	<0.05					<0.05	mg/kg	TM30/PM17
Dissolved Molybdenum #	<0.002	0.020					<0.002	mg/l	TM30/PM17
Dissolved Molybdenum (A10) #	<0.02	0.20					<0.02	mg/kg	TM30/PM17
Dissolved Nickel [#]	<0.002	<0.002					<0.002	mg/l	TM30/PM17
Dissolved Nickel (A10) #	<0.02	<0.02					<0.02	mg/kg	TM30/PM17
Dissolved Selenium [#]	<0.003	<0.003					<0.003	mg/l	TM30/PM17
Dissolved Selenium (A10)#	<0.03	<0.03					<0.03	mg/kg	TM30/PM17
Dissolved Zinc [#]	<0.003	<0.003					<0.003	mg/l	TM30/PM17
Dissolved Zinc (A10) #	<0.03	<0.03					<0.03	mg/kg	TM30/PM17
Mercury Dissolved by CVAF #	<0.00001	<0.00001					<0.00001	mg/l	TM61/PM0
Mercury Dissolved by CVAF [#]	<0.0001	<0.0001					<0.0001	mg/kg	TM61/PM0
Phenol	<0.01	<0.01					<0.01	mg/l	TM26/PM0
Phenol	<0.1	<0.1					<0.1	mg/kg	TM26/PM0
Fluoride	<0.3	<0.3					<0.3	mg/l	TM173/PM0
Fluoride	<3	<3					<3	mg/kg	TM173/PM0
Sulphate as SO4 #	8.42	2.10					<0.05	mg/l	TM38/PM0
Sulphate as SO4 [#]	84.2	21.0					<0.5	mg/kg	TM38/PM0
Chloride [#]	0.3	<0.3					<0.3	mg/l	TM38/PM0
Chloride [#]	3	<3					<3	mg/kg	TM38/PM0
Dissolved Organic Carbon	5	2					<2	mg/l	TM60/PM0
Dissolved Organic Carbon	50	20					<20	mg/kg	TM60/PM0
pН	8.13	8.44					<0.01	pH units	TM73/PM0
Total Dissolved Solids #	69	43					<35	mg/l	TM20/PM0
Total Dissolved Solids #	690	430					<350	mg/kg	TM20/PM0

Exova Jones Envir	onmente	al														
Location:	Ground Investigations Ireland Report : EN12457_7687-04-18 Additional Airfield Boreholes Solids: V=60g VOC jar, Stephen Kealy							g glass jar, T=plastic tub								
	18/10144															
J E Sample No.	1-3	4-6														
Sample ID	BH04	BH04														
Depth	1.30	1.50													e attached n	
COC No / misc														abbievi	ations and a	cionyms
Containers	VJT	VJT														
Sample Date	16/05/2018	16/05/2018														
Sample Type	Soil	Soil														T.
Batch Number	1	1									Inert	Stable Non-	Hazardous	LOD LOR	Units	Method
Date of Receipt	28/06/2018	28/06/2018										reactive				No.
Solid Waste Analysis	0	0.55									-	_	_	0		
Total Organic Carbon # Sum of BTEX	0.71 <0.025	0.50 <0.025 ^{sv}									3	5	-	<0.02 <0.025	% mg/kg	TM21/PM2 TM31/PM1
Sum of 7 PCBs	<0.025	<0.025									1	-	-	<0.025	mg/kg	TM31/PM1
Mineral Oil	<30	<30									500	-	-	<30	mg/kg	TM5/PM8/PM1
PAH Sum of 6	<0.22	<0.22									-	-	-	<0.22	mg/kg	TM4/PM8
PAH Sum of 17	<0.64	<0.64									100	-	-	<0.64	mg/kg	TM4/PM8
CEN 10:1 Leachate																
Arsenic [#]	<0.025	<0.025									0.5	2	25	<0.025	mg/kg	TM30/PM1
Barium "	0.03	0.11									20	100	300	<0.03	mg/kg	TM30/PM1
Cadmium "	<0.005	<0.005									0.04	1	5	<0.005	mg/kg	TM30/PM1
Chromium #	<0.015	<0.015									0.5	10	70	<0.015	mg/kg	TM30/PM1
Copper #	<0.07	<0.07									2	50	100	<0.07	mg/kg	TM30/PM1
Mercury # Molybdenum #	<0.0001 <0.02	<0.0001 0.20									0.01	0.2	2 30	<0.0001	mg/kg mg/kg	TM61/PM0 TM30/PM1
Nickel [#]	<0.02	<0.02									0.4	10	40	<0.02	mg/kg	TM30/PM1
Lead"	<0.05	<0.05									0.5	10	50	<0.05	mg/kg	TM30/PM1
Antimony #	0.02	<0.02									0.06	0.7	5	<0.02	mg/kg	TM30/PM1
Selenium #	<0.03	<0.03									0.1	0.5	7	<0.03	mg/kg	TM30/PM1
Zinc #	<0.03	<0.03									4	50	200	<0.03	mg/kg	TM30/PM1
Total Dissolved Solids # Dissolved Organic Carbon	690 50	430 20									4000 500	60000 800	100000 1000	<350 <20	mg/kg mg/kg	TM20/PM TM60/PM
Dissolved Organic Galborr	50	20									500	000	1000	~20	ilig/kg	11100/1111
Mass of raw test portion	0.1066	0.1031									-	-	-		kg	NONE/PM1
Dry Matter Content Ratio	84.1	87.1									-	-	-	<0.1	%	NONE/PM
Leachant Volume	0.883	0.887									-	-	-		1	NONE/PM1
Eluate Volume	0.85	0.8									-	-	-		I	NONE/PM1
рН "	8.18	8.84									-	-	-	<0.01	pH units	TM73/PM1
F · ·															,	
Phenol	<0.1	<0.1									1	-	-	<0.1	mg/kg	TM26/PM
E	_													-		
Fluoride	<3	<3									-	-	-	<3	mg/kg	TM173/PM
Sulphate as SO4 #	84.2	21.0									1000	20000	50000	<0.5	mg/kg	TM38/PM
Chloride "	3	<3									800	15000	25000	<3	mg/kg	TM38/PM
																1

EPH Ir	nterpre	tation	Report
---------------	---------	--------	--------

B /		^ - I	
Matrix	-	- D	
	-		

Client Name:	Ground Investigations Ireland
Reference:	7687-04-18
Location:	Additional Airfield Boreholes
Contact:	Stephen Kealy

J E Job No.	Batch	Sample ID	Depth	J E Sample No.	EPH Interpretation
18/10144	1	BH04	1.30	1-3	No interpretation possible
18/10144	1	BH04	1.50	4-6	No interpretation possible

Client Name:	Ground Investigations Ireland
Reference:	18/04/7687
Location:	Additional Airfield Boreholes
Contact:	Stephen Kealy

Note:

Asbestos Screen analysis is carried out in accordance with our documented in-house methods PM042 and TM065 and HSG 248 by Stereo and Polarised Light Microscopy using Dispersion Staining Techniques and is covered by our UKAS accreditation. Detailed Gravimetric Quantification and PCOM Fibre Analysis is carried out in accordance with our documented in-house methods PM042 and TM131 and HSG 248 using Stereo and Polarised Light Microscopy and Phase Contrast Optical Microscopy (PCOM). Samples are retained for not less than 6 months from the date of analysis unless specifically requested.

Opinions, including ACM type and Asbestos level, lie outside the scope of our UKAS accreditation.

Where the sample is not taken by a Jones Environmental Laboratory consultant, Jones Environmental Laboratory cannot be responsible for inaccurate or unrepresentative sampling.

Signed on behalf of Jones Environmental Laboratory:

All The states -

Ryan Butterworth Asbestos Team Leader

J E Job No.	Batch	Sample ID	Depth	J E Sample No.	Date Of Analysis	Analysis	Result
18/10144	1	BH04	1.30	2	11/07/2018	General Description (Bulk Analysis)	soil/stones
					11/07/2018	Asbestos Fibres	NAD
					11/07/2018	Asbestos Fibres (2)	NAD
					11/07/2018	Asbestos ACM	NAD
					11/07/2018	Asbestos ACM (2)	NAD
					11/07/2018	Asbestos Type	NAD
					11/07/2018	Asbestos Type (2)	NAD
					11/07/2018	Asbestos Level Screen	NAD
18/10144	1	BH04	1.50	5	11/07/2018	General Description (Bulk Analysis)	soil/stones
					11/07/2018	Asbestos Fibres	NAD
					11/07/2018	Asbestos Fibres (2)	NAD
					11/07/2018	Asbestos ACM	NAD
					11/07/2018	Asbestos ACM (2)	NAD
					11/07/2018	Asbestos Type	NAD
					11/07/2018	Asbestos Type (2)	NAD
					11/07/2018	Asbestos Level Screen	NAD

Client Name:Ground Investigations IrelandReference:7687-04-18Location:Additional Airfield BoreholesContact:Stephen Kealy

J E Job No.	Batch	Sample ID	Depth	J E Sample No.	Analysis	Reason
18/10144	1	BH04	1.30	1-3	EPH, GRO, PAH, PCB, pH, TOC	Sample holding time exceeded prior to receipt
18/10144	1	BH04	1.30	1-3	GRO	Solid Samples were received at a temperature above 9°C.
18/10144	1	BH04	1.50	4-6	EPH, GRO, PAH, PCB, pH, TOC	Sample holding time exceeded prior to receipt
18/10144	1	BH04	1.50	4-6	GRO	Solid Samples were received at a temperature above 9°C.

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating.

Only analyses which are accredited are recorded as deviating if set criteria are not met.

Matrix : Solid

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

JE Job No.: 18/10144

SOILS

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

Samples must be received in a condition appropriate to the requested analyses. All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. If this is not the case you will be informed and any test results that may be compromised highlighted on your deviating samples report.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

REPORTS FROM THE SOUTH AFRICA LABORATORY

Any method number not prefixed with SA has been undertaken in our UK laboratory unless reported as subcontracted.

ABBREVIATIONS and ACRONYMS USED

SO17025 (UKAS Ref No. 4225) accredited - UK.
SO17025 (SANAS Ref No.T0729) accredited - South Africa.
dicates analyte found in associated method blank.
ilution required.
ICERTS accredited.
ot applicable
o Asbestos Detected.
one Detected (usually refers to VOC and/SVOC TICs).
o Determination Possible
alibrated against a single substance
urrogate recovery outside performance criteria. This may be due to a matrix effect.
esults expressed on as received basis.
QC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
esult outside calibration range, results should be considered as indicative only and are not accredited.
nalysis subcontracted to an Exova Jones Environmental approved laboratory.
amples are dried at 35°C ±5°C
uspected carry over
imit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
latrix Effect
o Fibres Detected
QC Sample
lank Sample
lient Sample
rip Blank Sample
outside Calibration Range

Method Code Appendix

JE Job No: 18/10144

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465 and BS1377.	PM0	No preparation is required.			AR	
TM4	Modified USEPA 8270 method for the solvent extraction and determination of 16 PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.			AR	Yes
TM4	Modified USEPA 8270 method for the solvent extraction and determination of 16 PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes		AR	Yes
TM5	Modified USEPA 8015B method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) with carbon banding within the range C8-C40 GC-FID.	PM16	Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.			AR	
TM5	Modified USEPA 8015B method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) with carbon banding within the range C8-C40 GC-FID.	PM8/PM16	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required/Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.			AR	Yes
TM5	Modified USEPA 8015B method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) with carbon banding within the range C8-C40 GC-FID.	PM8/PM16	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required/Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.	Yes		AR	Yes
TM5/TM36	please refer to TM5 and TM36 for method details	PM8/PM12/PM16	please refer to PM8/PM16 and PM12 for method details			AR	Yes
TM17	Modified US EPA method 8270. Determination of specific Polychlorinated Biphenyl congeners by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes		AR	Yes
TM20	Modified BS 1377-3: 1990/USEPA 160.3 Gravimetric determination of Total Dissolved Solids/Total Solids	PM0	No preparation is required.	Yes		AR	Yes
TM21	Modified BS 7755-3:1995, ISO10694:1995 Determination of Total Organic Carbon or Total Carbon by combustion in an Eltra TOC furnace/analyser in the presence of oxygen. The CO2 generated is quantified using infra-red detection. Organic Matter (SOM) calculated as per EA MCERTS Chemical Testing of Soil, March 2012 v4.	PM24	Dried and ground solid samples are washed with hydrochloric acid, then rinsed with deionised water to remove the mineral carbon before TOC analysis.	Yes		AD	Yes

Method Code Appendix

JE Job No: 18/10144

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM26	Determination of phenols by Reversed Phased High Performance Liquid Chromatography and Electro-Chemical Detection.	PM0	No preparation is required.			AR	Yes
ТМЗО	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7, 6010B and BS EN ISO 11885 2009	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.			AD	Yes
ТМ30	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7, 6010B and BS EN ISO 11885 2009	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.	Yes		AD	Yes
TM30	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7, 6010B and BS EN ISO 11885 2009	PM17	Modified method EN12457-2 As received solid samples are leached with water in a 10:1 water to soil ratio for 24 hours, the moisture content of the sample is included in the ratio.	Yes		AR	Yes
TM31	Modified USEPA 8015B. Determination of Methyltertbutylether, Benzene, Toluene, Ethylbenzene and Xylene by headspace GC-FID.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.			AR	Yes
TM31	Modified USEPA 8015B. Determination of Methyltertbutylether, Benzene, Toluene, Ethylbenzene and Xylene by headspace GC-FID.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.	Yes		AR	Yes
TM36	Modified US EPA method 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.			AR	Yes
TM36	Modified US EPA method 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.	Yes		AR	Yes
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods 325.2 (Chloride), 375.4 (Sulphate), 365.2 (o-Phosphate), 353.1 (TON), 354.1 (Nitrite), 350.1 (NH4+), 7196A (Hex Cr)	PM0	No preparation is required.	Yes		AR	Yes
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods 325.2 (Chloride), 375.4 (Sulphate), 365.2 (o-Phosphate), 353.1 (TON), 354.1 (Nitrite), 350.1 (NH4+), 7196A (Hex Cr)	PM20	Extraction of dried and ground or as received samples with deionised water in a 2:1 water to solid ratio using a reciprocal shaker for all analytes except hexavalent chromium. Extraction of as received sample using 10:1 ratio of 0.2M sodium hydroxide to soil for hexavalent chromium using a reciprocal shaker.	Yes		AR	Yes

Method Code Appendix

JE Job No: 18/10144

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM60	Modified USEPA 9060. Determination of TOC by calculation from Total Carbon and Inorganic Carbon using a TOC analyser, the carbon in the sample is converted to CO2 and then passed through a non-dispersive infrared gas analyser (NDIR).	PM0	No preparation is required.			AR	Yes
TM61	Modified US EPA methods 245.7 and 200.7. Determination of Mercury by Cold Vapour Atomic Fluorescence.	PM0	No preparation is required.	Yes		AR	Yes
TM65	Asbestos Bulk Identification method based on HSG 248.	PM42	Solid samples undergo a thorough visual inspection for asbestos fibres prior to asbestos identification using TM065.	Yes		AR	
TM73	Modified US EPA methods 150.1 and 9045D and BS1377:1990. Determination of pH by Metrohm automated probe analyser.	PM0	No preparation is required.			AR	Yes
TM73	Modified US EPA methods 150.1 and 9045D and BS1377:1990. Determination of pH by Metrohm automated probe analyser.	PM11	Extraction of as received solid samples using one part solid to 2.5 parts deionised water.	Yes		AR	No
TM173	Analysis of fluoride by ISE (Ion Selective Electrode) using modified ISE method 340.2	PM0	No preparation is required.			AR	Yes
NONE	No Method Code	NONE	No Method Code			AR	Yes
NONE	No Method Code	PM17	Modified method EN12457-2 As received solid samples are leached with water in a 10:1 water to soil ratio for 24 hours, the moisture content of the sample is included in the ratio.				
NONE	No Method Code	PM17	Modified method EN12457-2 As received solid samples are leached with water in a 10:1 water to soil ratio for 24 hours, the moisture content of the sample is included in the ratio.			AR	
NONE	No Method Code	PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465 and BS1377.			AR	

Appendix - Methods used for WAC (2003/33/EC)

Leachate tests	
10l/kg; 4mm	I.S. EN 12457-2:2002 Specified particle size; water added to L/S ratio; capped; agitated for 24 ± 0.5 hours; eluate
	settled and filtered over 0.45 µm membrane filter.
Eluate analysis	
As	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
Ва	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
Cd	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
Cr total	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
Cu	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
Hg	I.S. EN 13370 rec. EN 1483 (CVAAS)
Мо	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
Ni	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
Pb	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
Sb	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
Se	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
Zn	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
Chloride	I.S. EN 12506 rec. EN ISO 10304-part 1 (liquid chromatography of ions)
Fluoride	I.S. EN 12506 rec. EN ISO 10304-part 1 (liquid chromatography of ions)
Sulphate	I.S. EN 12506 rec. EN ISO 10304-part 1 (liquid chromatography of ions)
Phenol index	I.S. EN 13370 rec. ISO 6439 (4-Aminoantipyrine spectrometic methods after distillation)* (BY HPLC - Jones Env)
DOC	I.S. EN 1484
TDS	I.S. EN 15216
Compositional analy	rsis
TOC	I.S. EN 13137 Method B: carbonates removed with acid; TOC by combustion.
BTEX	GC-FID
PCB7**	I.S. EN 15308 analysis by GC-ECD.
Mineral oil	I.S. EN 14039 C10 to C40 analysis by GC-FID.
PAH17***	I.S. EN 15527 PAH17 analysis by GC-MS
Metals	I.S. EN 13657 - Aqua regia digestion: EN ISO 11885 (ICP-OES)
Other	
	I.S. EN 14346 sample is dried to a constant mass in an oven at 105 ± 3 °C; Method B Water content by direct Karl-
Dry matter	Fischer-titration and either volumetric or coulometric detection.
LOI	I.S. EN 15169 Difference in mass after heating in a furnace up to 550 \pm 25 °C.
ANC	CEN/TS 15364 Determined by amouns of acid or base needed to cover the pH range
	to LOD, precision, etc., any other suitable method can be used, e.g. AFS, ICP-MS P, PCB-101, PCB-118, PCB-138, PCB-153 and PCB-180

***Naphthalene, Acenaphthylene, Acenaphthene, Anthracene, Benzo(a)anthracene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(g,h,i)perylene, Benzo(a)pyrene, Chrysene, Coronene, Dibenzo(a,h)anthracene, Fluorene, Fluoranthene, Indeno(1,2,3-c,d)pyrene, Phenanthrene and Pyrene.